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Goal

Study global (virtual) geometry of (derived) enhancements of moduli spaces of
solutions to non-linear PDEs and their deformations (+ enumerative problems,
DT/GW /PT-theory, Mirror symmetry ...).

Based on arXiv:2507.07937 and arXiv:2411.02387 (with J.Kryczka) and
previous work with J. Kryczka-A.S and S-T.Yau:

e Derived Moduli of Solutions to (Nonlinear) PDEs: Part I [KSY] and Part
II [KSY2] (Kryczka-S-Yau)

e Hilbert and Quot Schemes for PDEs: Part I [KSh] and Part IT [KSh2]
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Overview and strategy: PDE analogs of Hilb, Quot

The road-map:
e Analytic presentation F(x,u,d;u) = 0,= geometric object
Zy = {F = 0}.
¢ Obtain a stable object Z°° via the formal theory of integrability.

Yields a differential ideal Zz- from a family of compatible finite-order
algebraic ideals {I} : k > 0}.

e Associated canonical algebraic structures - symbolic/characteristic
module M,.

o Geometric integrability conditions on Z°° induce algebraic regularity
conditions on M, (realized via Koszul, Spencer complexes).
e Numerical polynomial Pp(Oze ), via these resolutions of M,.

o A space QuotE parameterizing sub-schemes Z°° with M, of prescribed
regularity, induced by fixing P € Q[t] and requiring Pp = P.



Systems of NLPDEs

A system of N differential equations for a vector-valued function
w=(u',...,u™) of variables x = (x1,...,z,) is:
ou 9y aloly _
Fl(x7u7%7"‘7amk7"'7 8]:,,-)_07
Zy = (1)
Ou 9k u aloly _
FN("I"7U7E7"'7W7"'7010)70'

. . [o] e
Derivatives u2 := 2-»%
o 0T &

o= (o1,...0n) € N® with length |o| := 01 + - - - + 0n < k (order).

, for o =1, ..., m: multi-index notation

Simplifying assumption: The orders of each Fla, A =1,..., N are the same.

e 7, is the zero locus of (1) in k-jet space JEE 3 (2 u®,ul) ie.

n+k
dim =n+m P

Oz, = Ok p/Ik, with I, = span{(1)}.
5

Remark 1. The structure sheaf O‘,é-,((E) is the k’th-jet sheaf J*(EY).
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Reminder from Algebraic Geometry

First jets can be obtained by considering first order Nilpotent Thickening of
Diagonal. Given A : X < X x X consider the canonical short exact
sequence:

0—=Za = Oxxx > AOx =: 0a =0 (2)

Thickening A in X x X we obtain
O%Ii%OXxxﬁOQA—)O (3)

It is then seen that the following s.e.s. holds true:

0—Z/T?> = Oa = Op =0 4)

After projection via p: X x X — X we obtain

0— Q% = pa(O2n) :=J (Ox) = Ox =0 (5)

Similarly, we can apply k-fold jet construction to a sheaf EY and obtain:

0 — Sym* QY @ EY — JE(EY) = JEHEY) - 0 (6)
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The restriction Sym* QY ® EY |z, is called order k Co-symbol of PDE Z.
Differential operators P : E — F of order < k between vector bundles (or coherent
sheaves) are equivalently O x-linear morphisms Fp,

P € DSF(E,F) ~ Fp € Hom(J% E, F), via P = Fp o ji.
Prolonged operators: Fg) : J§(+kE — Jf(F,E >0, via Fg) = I o

e Obtain Z*®° = kelr(F;;.oo))7 by considering Zj, := {Fp = 0} together with all
differential consequences

Z>® = Z,U U Zl(f) ~ {D,Fp = 0| multi-index |o| > 0(unbounded)}.
£2>0
o OZ([) = OJ)C+4E/[]€+£7 with Ik’+1’. = {FP,DUFP : |0'| S é}
k X

Remark. Ideals Zz are ‘differentially-generated’= algebraically generated by
D;(F)

m
k= 9 + Z Z ug .y, 8%7 (total derivative). (7)

81'1'
a=1|c|>0

Defines an integrable distribution C : 9; — D; (flat connection)



What is a PDE?

Forgetting derivatives gives a jet-tower:
ke

coo o iy IS RIS o e T e 18 0K,
Considering Z = {F(z,u(x),d3u(z) = 0} < J% E, two main operations:

e Projection: The r-fold projection, p.(Zx) := nf_,.(Zx) C JE"E.

« Prolongation: pry(Zx) := Jx(Zk) X j1 (JE E) J;JFIE,

CX\TX
Put pk = wl\zk 22k = X = Zyr = pr,(Zi) = Jx(pe) N Jg(JrrE C Jg;rr.

Remark 1. Neither p,(Zx—r) nor Zyy, are smooth in general (not relevant
for us).
Remark 2. More simply prZi C Zi—1 and pry(Zk) 2 Zi+1(not equality!).

Remark 3. They are not inverse operations: take Z C J%E prolong
Zy4r C JET and project back to J% E, we only get p.Zi C Zj (not
equality!).



What is a PDE?

Ex. Z§*® := {F = uoo — cus = 0} = JYE ~ k[t, 21, ..., Tn, u, Ui, Uij].

< Z(m) = {U(TOO = ClUcqii, |0’| 2 0}

Key point (Vinogradov’s Philosophy)

A PDE Z < J%E should be understood in terms of its
infinite-prolongation Z(*) as a sub-space of JEE.

Since analytic presentations are just one representative, may lead to
ambiguities:

Ex. Z := {uzoud, + ul, + (u2 — us)u = 0}, and

Ug =,

’
/i — Ut = w,

2

VWi + vpwy + (v — w)u = 0.

Equivalent, but can not be compared at face value (live in different jet-spaces;
Z C J?(E) with dim(E) = 3 and 2’ C J}(E') with dim(E’) = 5.)



What is a PDE?

Thus we can not compare intrinsic structure in a unified way between the
two presentations e.g. can not discuss symmetries, solutions, conservation
laws etc.

Assemble integrability conditions arising at finite jet/prolongation orders
into a single geometric object=- Algebraic D-schemes (stacks, higher stacks
etc.)
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Spencer (D-) Regularity

Infinite prolongations: a system of non-linear PDEs Z of k-th order is a
family of sub-schemes Z° C J%E for all £ € N where £ > k. It is given as a
tower of surjective submersions with inverse limit Z°° = h_H)l 7.

Prolongation = tower of schemes:

k+2 k+1
Pryo—1 b
---HZ;H_[ ——)Z}H_(g_l — "'%Zk-o—l —)Zk.

A priori unclear it stabilizes (addition of new equations and variables). An
analog of the Hilbert basis theorem is needed.

But, infinite prolongations Z°° give D-schemes Specy, (Oze ), determined
by D-ideals 7 e.g. Ozo = OJ?(OE/ZZOO.

Stabilization (thus non-emptiness) is probed via Ritt’s analog of Hilbert
basis theorem for differential ideals (Ritt-Radenbush Theorem).



Spencer (D-) Regularity

We start with the differentially stable objects - it is convenient to single out
those which arise from the Cartan-Kuranishi prolongation process.

Definition

Let Z be a D-ideal with corresponding closed D-subscheme Z°° C JPE. It is
Spencer r-regular if: (i) Z,,pr,(Z;) are (possibly singular) schemes and
pry(Zr) — Z, is surjective, and (ii) for all £ > 0 one has Z;4, = pry(Z,). A
D-scheme is Spencer regular if it is Spencer r-regular for some r > 0.

Write Reg(Z) = 7.
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Spencer (D-) Regularity

We start with the differentially stable objects - it is convenient to single out
those which arise from the Cartan-Kuranishi prolongation process.

Definition

Let Z be a D-ideal with corresponding closed D-subscheme Z°° C JPE. It is
Spencer r-regular if: (i) Z,,pr,(Z;) are (possibly singular) schemes and
pry(Zr) — Z, is surjective, and (ii) for all £ > 0 one has Z;4, = pry(Z,). A
D-scheme is Spencer regular if it is Spencer r-regular for some r > 0.

Write Regp(Z) = r.

* Pictorially:
G = T =000 i= FO = GO = oo,

highlighting the regular region, defined by all » > r¢ such that
Z" M =pr,(Z"). Everywhere else, we ask that Z, 1 C pr,(Z,), for all r > k.

Analytic category: There is a minimal ro such that (ii) holds for all r > 7.
(Cartan-Kuranishi Theorem)

Any algebraic analog of Spencer r-regularity?

10
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Intuition from Algebraic Geometry

Equation ideal 7 is stable under an action by Dx (a D-ideal) and Oze is an
algebra (also stable by D) e.g. Oz € CAlgy (Dy).

e Grothendieck-style algebraic-geometry for PDEs - Algebraic D-Geometry:

O%szx; *)O,];OE*)OZQC — 0.

Concept Algebraic Geometry D-Geometry
Formula P(z)=0 F(z,u,0°u) =0
Algebraic structure | Commutative k-algebra A Commutative D-algebra A
Free structure P € kz] FeA:=0,g
Solution space {z € A|P(z) =0} {a € A|F(a) = 0}
Affine object Specy, (A) Specp (A)
Representability Soly (P = 0) ~ Spec(A/P) | Solp(F = 0) ~ Specp (O g /Lz)
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Intuition from Algebraic Geometry

Equation ideal Z is stable under an action by Dx (a D-ideal) and Ozoo is an
algebra (also stable by D) e.g. Oz € CAlgy (Dy).

e Grothendieck-style algebraic-geometry for PDEs - Algebraic D-Geometry:

O*}szx; *)O,];OE*)OZQC — 0.

Concept Algebraic Geometry D-Geometry
Formula P(z)=0 F(z,u,0°u) =0
Algebraic structure | Commutative k-algebra A Commutative D-algebra A
Free structure P € kz] FeA:=0,g
Solution space {z € A|P(z) =0} {a € A|F(a) = 0}
Affine object Specy, (A) Specp (A)
Representability Soly (P = 0) ~ Spec(A/P) | Solp(F = 0) ~ Specp (O g /Lz)

Question

Is there a moduli space of D-subschemes?

11
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All schemes are locally Noetherian over an algebraically closed field k.

X/S is projective and O(1) a relatively ample line bundle. P is a fixed
numerical polynomial.

Recall: Hilbert functor Hilb" (X/S) : Schs — Sets, associates to an
S-scheme T', the set

{Yr CX xsT :fort €T, Yr|; =Y C X,P(Oy) = P}.

Theorem (Grothendieck)

The Hilbert functor is representable by a projective scheme.

Equiv. QuotX/S(F)(T) := {coherent quotients ¢ : Fr — G|G is T — flat}.
P . 0 g _ /
1. QuotX/S(F) — QuotX/S(F)7 with G ~ G" if ker(q) = ker(q').
2. QuotX/S(OX) = Hilby ,5(X).

13



Finiteness

Fixing P induces a regularity condition on the quotient sheaf G.

14



Finiteness

Fixing P induces a regularity condition on the quotient sheaf G.

Fact: By restricting to structure sheaves of subschemes with a fixed P, we
can find an integer m depending only on P that works simultaneously for
the structure sheaf of every subscheme with Hilbert polynomial equal to P

(uniform bound).

14



Finiteness

Fixing P induces a regularity condition on the quotient sheaf G.

Fact: By restricting to structure sheaves of subschemes with a fixed P, we
can find an integer m depending only on P that works simultaneously for
the structure sheaf of every subscheme with Hilbert polynomial equal to P

(uniform bound).

Definition
A coherent sheaf F' € Coh(X) is Castelnuovo-Mumford m-regular if
HY(X,F(m —1)) =0,i>0.

14



Finiteness

Fixing P induces a regularity condition on the quotient sheaf G.

Fact: By restricting to structure sheaves of subschemes with a fixed P, we
can find an integer m depending only on P that works simultaneously for
the structure sheaf of every subscheme with Hilbert polynomial equal to P

(uniform bound).

Definition
A coherent sheaf F' € Coh(X) is Castelnuovo-Mumford m-regular if
HY(X,F(m —1)) =0,i>0.

This leads to an embedding of the Quot scheme into a suitable Grassmann

variety.

14



Finiteness

Fixing P induces a regularity condition on the quotient sheaf G.

Fact: By restricting to structure sheaves of subschemes with a fixed P, we
can find an integer m depending only on P that works simultaneously for
the structure sheaf of every subscheme with Hilbert polynomial equal to P

(uniform bound).

Definition
A coherent sheaf F' € Coh(X) is Castelnuovo-Mumford m-regular if
HY(X,F(m —1)) =0,i>0.

This leads to an embedding of the Quot scheme into a suitable Grassmann

variety.

There is a more general notion of Castelnuovo-Mumford regularity, with a

purely commutative algebraic description.

14
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eKoszul (degree k), Ki(V):

05 S " VoAV & shrtly g amly s sFY o,

q
O(wuiA...ANvg) = Z(,l)”lv? CWRUIA .. AV AL Avg.
i=1

ePolynomial de Rham (degree k) Ry (V):
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Algebraic regularity: Koszul complex

Let V' be an n-dimensional k-vector space.

eKoszul (degree k), Ki(V):

05 S " VoAV & shrtly g amly s sFY o,

q
O(wuiA...ANvg) = Z(—l)’“v? CWRUIA .. AV AL Avg.
i=1

ePolynomial de Rham (degree k) Ry (V):

055V S VeV L S 2V A2V = - 5 SF "V R ATV =0

O(wy -+ wp ®V) = E W1 Wi— Wy - Wp @ Wi A V.

i=1

Remark. 8% = 0,62 =0, and Re(V)" =~ Ko(VY).
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Algebraic regularity

For a module M, over a polynomial ring, tensoring the Koszul sequence
gives Ko (M) ~ Ko(V) @ M.
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Algebraic regularity

For a module M, over a polynomial ring, tensoring the Koszul sequence
gives Ko (M) ~ Ko(V) @ M.

If M is additionally graded, the Koszul complex is bi-graded:
Hpq(Ke(M)) := H( APV @ My—1 = APV ® My — APV ® Mgy1).

The notion of regularity uses these spaces: M is r-reqular if:
Hpq(Ke(M)) =0,Yp,q > 1.

Definition
The reqularity of M is regqp, (M) := inf{Hp 4 (K.(M)) =0,Vp,q > r}.

16



Algebraic D-Geometry of Non-linear
PDEs



The ‘Guiding Idea’

Geometric theory of PDEs is similar to ordinary algebraic geometry.
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The ‘Guiding Idea’

Geometric theory of PDEs is similar to ordinary algebraic geometry.
Algebraic Geometry: Pi(x1,...,2n5)=0,...,Px(z1,...,7,) = 0 = a geometric
object i.e. schemes over k-algebras:
Pl(il‘l, oo .713”) = O
Schy C Fun(CALG”, SETS) ~ S :

e.g. HilbY ,Quot?

D-Geometry: Fi(z,...,up,-..)=0,...,Fn(,...,U,...) =0 = a geometric
object i.e. schemes over D-algebras:
Fi(z,[u]) =0
SChx(D) C Fun(CALGX(DX)Op, SETS) ~ S

'HilbE  QuotE
DX,Q Dy

Fy(z,[u]) =0

17



Basic idea

Define a set,

Tg00 — OJ;OE Hq) Ozoo
[Zx] € Opy (n,m, N, k) ~ ioz l iﬁ

IZ/OC — OJ;(OE A OZéd

where «, 8 are isomorphisms of Dx-algebras.
Impose that the system {Fa =0: A=1,..., N}, or equivalently the ideal

Tz satisfies

SOlD (IZOO) 75 SpecD(OJ}o(oE), and SO]D(IZOC) # (Z) . (8)
—_————

Non-trivial Consistent

Formal integrability is assumed - the ideals contain all possible integrability
conditions.

18



Our original question

Question

Is the space Qp, of D-ideal sheaves representable?

What do we need?

o Identify numerical characterizations to parameterize our objects;
o Obtain ‘regularity’ compatible with cohomological vanishing
e Show uniform boundedness in flat families

Question

Is there a derived enhancement RQp, ?

Algebraic D-Geometry ~ Derived D-Geometry

Schx (Dx) C Fun(CAng (Dx)op, SETS) ~ dStkx(Dx) C

dPStkx (Dx).

19



Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic
description.
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Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic
description.

Let V, W be finite-dimensional vector spaces, dimV = n.

Consider Sym"(VY) @ W,k > 0.

Let A € Sym*(VY) @ W be a vector subspace.

First-prolongation is pr, (N;) := {P € Sym* (V) @ W|5(P) € N @ V¥ }.
* Alternatively, pr;(Ng) := (V @ Ng) N (SymFTH(VV) ® W), taken in

VV'® (Symi(VV) @ W).

Definition

A sequence of vector sub-spaces {N}, C SymF(VV) ® Whiez, is a symbolic
system if./\/’k+1 - prl(./\/k),k € Z+.

Remark: pr, 4 (Ng) := pry (pr,.(Nz)),r € N or
pr, (M) = (®i=1 VY ® Ni) N (Sym™*"(VY) ® E).

We can construct a graded module
M. = BNk = Ko(Mo) = Hp ¢ (Ko(M.)).
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An involutive non-linear PDE is one whose symbol module is regular.
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An involutive non-linear PDE is one whose symbol module is regular.

The (geometric) symbol of an involutive non-linear PDE induces at each
point a polynomial (co)module - characteristic module.
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Roughly

An involutive non-linear PDE is one whose symbol module is regular.
The (geometric) symbol of an involutive non-linear PDE induces at each
point a polynomial (co)module - characteristic module.

Approach: Use Koszul homology or R-dual non-linear Spencer cohomology
to determine the length of finite resolutions (determine the regularity,
analogous to Castelnuovo-Mumford).

e Only looking at involutive PDEs is not a huge restriction - analytic
systems can always be made involutive (Cartan-Kuranishi Theorem).

e Most examples in Mathematical Physics are of this type e.g. Yang-Mills,
Einstein, Einstein-Maxwell, Higher p-form theories...
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Compatibility with ‘cohomological vanishing’

Involutivity and the degree of involution correspond to a certain
cohomological vanishing criteria (Cartan, Goldschmidt and Spencer)
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Compatibility with ‘cohomological vanishing’

Involutivity and the degree of involution correspond to a certain
cohomological vanishing criteria (Cartan, Goldschmidt and Spencer)

Spencer cohomology ~ Sheaf cohomology for PDEs (the sheaf is the
solution sheaf).

Spencer o-cohomology ~ Cohomology of graded polynomial de Rham
complex for symbolic systems N = {Nj1, : 7 > 0}.
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Spencer Cohomology I

Observation: for each k > 1, we have

.
0— Sym*( Q%) 9 E —» JYE 5 JEE 0.

(co)symbols live here
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Spencer Cohomology I

Observation: for each k > 1, we have

ﬂ,k
0— Sym*( Q%) 9 E —» JYE 5 JEE 0.
(co)symbols live here
The isomorphism is:
Sym*(Qx) ® E = Ker(JYE — J¥ 'E), 9)

defined by df1 - - - dfy @ e — 6y, ... 5, (Jr)(€), e € E, where
Ofy e fy =0 0---0p,, is the nested commutator, where 0y, := [f;, —].
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Spencer Cohomology I

Observation: for each k > 1, we have

ﬂ,k
0— Sym*( Q%) 9 E —» JYE 5 JEE 0.
(co)symbols live here
The isomorphism is:
Sym*(Qx) ® E = Ker(JYE — J¥ 'E), 9)

defined by df1 - - - dfy @ e — 6y, ... 5, (Jr)(€), e € E, where
Ofy e fy =0 0---0p,, is the nested commutator, where 0y, := [f;, —].

Cosymbol N, of Zj is:

0— Ny = JYE|z, = J¥ "E|z,_, = 0.
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Spencer cohomology

Given a coherent sheaf EF on X, the k-th Jet-Spencer complex of I is,
J*Sp%(E) =05 E 2 JEE S 0k @0, JSTES ., (10)

with S(w ® jk(e)) := dw @ jk—1(e). Projection J& E — J& 'E induces a
morphism of complexes:

0 E JYE Q% Royx JE'E —— N2Q% ®oy JETPE -

[ | !

0—— F—— JS'E —— Ok ®oy JE?E —— A2Q% ®oy JEPE — -
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Spencer cohomology

Given a coherent sheaf EF on X, the k-th Jet-Spencer complex of I is,
JESpX(E) =0 E 25 J5E 5 0k @0y JSES o (10)

with S(w ® jk(e)) := dw @ jk—1(e). Projection J& E — J& 'E induces a
morphism of complexes:

0 E JYE Q% Royx JE'E —— N2Q% ®oy JETPE -

[ | !
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For each k > 1 kernel of Jet-Spencer complexes:

Definition

The §-Spencer complex of E (of degree k) is,

5 _ [ _
0— SH(Q%)Box E = Q4 @0, SF 1 (Q%)®0x E — Q% ®0, S*2(Q%)@0 E - -
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Spencer cohomology

Given a coherent sheaf EF on X, the k-th Jet-Spencer complex of I is,
JESpX(E) =0 E 25 J5E 5 0k @0y JSES o (10)

with S(w ® jk(e)) := dw @ jk—1(e). Projection J& E — J& 'E induces a
morphism of complexes:

0 E JYE Q% Royx JE'E —— N2Q% ®oy JETPE -

[ | !

0—— F—— JS'E —— Ok ®oy JE?E —— A2Q% ®oy JEPE — -

For each k > 1 kernel of Jet-Spencer complexes:

Definition

The §-Spencer complex of E (of degree k) is,

5 _ [ _
0— SH(Q%)Box E = Q4 @0, SF 1 (Q%)®0x E — Q% ®0, S*2(Q%)@0 E - -

It is a complex of Ox-modules with differential
§:(weue)— (—)¥wAilu)Qe, with i : S¥77Q% < Ok @ ¥k,



In local charts

Restricting to Zx, we obtain d-Spencer complexes for cosymbols N.
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In local charts

Restricting to Zx, we obtain d-Spencer complexes for cosymbols N.
Consider 1y : Z, = {F(z,u,u[y)) = 0} — J%(E) :

ToJYE = span{v = x’i + Uy 0

_ k ) — Y.
pr Fuz I and TyZy = {v € Ty Jx E|TF(v) = 0}
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In local charts

Restricting to Zx, we obtain d-Spencer complexes for cosymbols N.

Consider 1y : Z, = {F(z,u,u[y)) = 0} — J%(E) :

TyJXE = span{v := xdi + u;% , and TypZy, = {v € TyJ% E|TF(v) = 0}.
% e

A linear system for the coefficients of v:

~ OF ;

: OF . .o
50 ¢+ > = (0)u3 = 0.

oug
i=1 a<n <ord (I

The geometric symbol N, of Zj is the family of vector spaces:

Ne): :=T.Zx N TJ;E/J;_lEJ ~T &

(relative tangents).
r—1lzy’ ©

25



In local charts

Restricting to Zx, we obtain d-Spencer complexes for cosymbols N.
Consider 1y : Z, = {F(z,u,u[y)) = 0} — J%(E) :

TyJXE = span{v := xdi + u;% , and TypZy, = {v € TyJ% E|TF(v) = 0}.
% e

A linear system for the coefficients of v:

~ OF ;

; oF
ox® Gz Z

oug
i=1 a<n <ord (I

(@), = 0.

The geometric symbol N, of Zj is the family of vector spaces:

Ne): :=T.Zx N TJ;E/J;_lEJ ~T &

(relative tangents).
r—1lzy’ ©

Coordinates

For Zj, = {F = 0}, then N}, = Zlgagm,\a\:ord(F) %(9)11
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Symbols and Characteristic Modules, Algebro-geometrically

Consider relative differentials of dg of holomorphic functions g € OJ@E ie.

() € X )11 % Ot plEr, - Euli, with (w36) € T"X.
Put Oz, = OJT E/I'r~
Order r symbol: N, C ®a0z,[¢1,. .., &n]rd(u®), generated by classes dF

mod I, of F' € I,..
Symbol: the associated graded module generated by M.
Characteristic module: graded quotient M := @ Oz, [&1,. .., &)/ Ny.

« Alternatively, look at conormal IT/IT of Z,, as sub-sheaf of ng(E ® Oz,..
Then,
1
Mr ~ QZr/Zr—l'
From Z*° = F"Z := Z, C J%(E),
Oprz ®0,,_1, Q}wr—lZ/x = QF’Z/X — Q. z/Fr—17 0 (11)

Applying Oz~ ®@o(rrz) (=)

1 1 1
OZoC@OFV‘*lZQF”‘ilZ/X = OZOO@OF’V'ZQFTZ/X = OZOO@OF"ZQFTZ/Frle — 0.
26



6-Spencer complex of Z: Full package

In more generality:
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6-Spencer complex of Z: Full package

In more generality:

Consider a family of prolonged operators: {F}(f) : J;"'ZE = ik F}e>o.
There is an induced family of (prolonged) symbol maps:

ouk(Fp) : SymgH (Qx) ®oy E — Symo, (Ux) ®@ F. (12)

A family of symbolic modules: {./\/'k"'Z = ker(w k(FP))}gZQ

The Spencer d-complex:

OHN’k%FZ iQ&@N’CH*l HQ§(®'/\/-k+/272H

l,

Cohomologies are denoted H! " (Fp)
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The situation is summarize by the commuting diagram,

0 0 0
| ! !

0 N NV —— .. — s N RO% -0
| | |

pr,Z pr,  Z®@Qy — - ——pr,_,ZRQ% =0
0 ——pr, Z ——pr, o Z0Q0% —— . — = pr,_,  ZRQ% =0
0 0 0

(13)
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Degree of Involution

Interpretation! D-involutivity ~ Serre vanishing (for sheaf of solutions).
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Proposition/Observation (x)

Suppose that Z is formally integrable and Spencer regular. Then its degree of
involution, agrees with the Spencer-regularity, and thus agrees with the
Castelnuovo-Mumford regularity of its (linearized) symbolic D-module.
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Degree of Involution

Interpretation! D-involutivity ~ Serre vanishing (for sheaf of solutions).

Definition: Let Z be formally integrable and involutive. Its degree of

involution is
regg,(T) := inefN{Hé)’q(/\/l.) =0, forall 0 <p < dimX,q > qo}‘
0

Proposition/Observation (x)

Suppose that Z is formally integrable and Spencer regular. Then its degree of
involution, agrees with the Spencer-regularity, and thus agrees with the
Castelnuovo-Mumford regularity of its (linearized) symbolic D-module.

Proof. Tzee = {Fa}~> 0(Zzo) := {osk({r,)}. They are homogeneous

polynomials determining a ‘symbol ideal’ in a polynomial algebra (on
T*X). Spencer sequences and Koszul sequences are dual.
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Summary: The role of involution

Pure geometric reasoning will not suffice to known when new integrability
conditions stop occurring.
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Summary: The role of involution

Pure geometric reasoning will not suffice to known when new integrability

conditions stop occurring.

Use also algebraic theory: formal integrability is often not sufficient and
one introduces ‘involution’

Rough idea: A natural polynomial structure lies hidden in the inner
geometry of the jet bundle formalism.

This allows us to associate with any {F = 0} a D-ideal Z and graded
symbol module M, over a polynomial algebra.

Constructing integrability conditions of {F = 0} is then formalised via the

syzygies of M.

Remark: We make contact with classical questions in commutative algebra

and algebraic geometry.
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Numerical polynomials

By Prop. (x): associate a Pp(Oze) using resolutions of
symbol/characteristic module M,. Such a resolution exists, expressible via
Spencer §-cohomology.
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Numerical polynomials

By Prop. (x): associate a Pp(Oze) using resolutions of
symbol/characteristic module M,. Such a resolution exists, expressible via
Spencer §-cohomology.

Encodes the dimensions of Sol(Zz~) (Cartan characters) and may be
determined geometrically from the dimension of the support the sheaf Ma,.

Define characteristic varieties Charp(Z°°) := supp(Me) C Z*° xx T*X

For each point zo € Z°°, corresponding to solution, pull-back M, is
D-module and Char is usual characteristic variety C T’ .

The D-Hilbert polynomial:

n—1

Pp(Oze, ) = Z(—l)p+qdimH§§(M.) . (f +n—p—q-— 1) . (14)

p,q
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Additional remarks

Interpretations of Spencer cohomology: HP?%(M,) encode e.g. H*(M,)
count § generators of the symbol module, H?"'(M,) count # equations of
order p, and H*?(M,) counts compatibility conditions.
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Additional remarks

Interpretations of Spencer cohomology: HP?%(M,) encode e.g. H*(M,)
count § generators of the symbol module, H?"'(M,) count # equations of
order p, and H*?(M,) counts compatibility conditions.

Spencer-Euler characteristic: If HP*9(M,) are finite-dimensional,
X(Z%) 1= (=1 dim (HP) (M)
Py

Finite-dimensionality can be guaranteed, for instance, if the system is

elliptic X is compact.

Suggest development of D-geometric Index theory for elliptic (hyperbolic!)
geometric PDEs.
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Summary by analogy

Comparing with Algebraic Geometry = numerical classification of

D-finitely generated ideals associated with differentially consistent systems

Concept Algebraic Geometry D-Geometry
Sheaf Algebraic ideal Jz C Ox D-ideal Zze C A’
Geometric Sub-scheme Z D-subscheme Z*° — JFE

Numerical

Graded ring
Sheaves
Graded module
Sheaf theoretic
Boundedness
Moduli

Hilbert polynomial Po,
R. = &:I'(X, Ox(t))
F € Coh(X)

M, € Mod?"(Rx)
Support
Castelnuovo-Mumford regularity
Hilbert scheme Hilbx

D-Hilbert polynomial Pn

J)”(oE/IZ(’“
Or=(x;z5) (%) = @101+ (x;25)(t)
Q}éx) (S 1\'10(1(0200 Koy Dx)
Gr(Qyoe) € Mod?” (Op=(x,2))
Microsupport (characteristic variety)
Degree of involutivity
D-Hilbert scheme Hilbh
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Concept Algebraic Geometry D-Geometry
Sheaf Algebraic ideal Jz C Ox D-ideal Zze C A’
Geometric Sub-scheme Z D-subscheme Z*° — JFE

Numerical

Graded ring
Sheaves
Graded module
Sheaf theoretic
Boundedness
Moduli

Hilbert polynomial Po,
R. = &:I'(X, Ox(t))
F € Coh(X)

M, € Mod?"(R.)
Support
Castelnuovo-Mumford regularity
Hilbert scheme Hilbx

D-Hilbert polynomial Pn

J)”(OE/IZ(’“
O+ (x;250) (%) = B1O7+(x;2) (1)
Q}éx) (S 1\'10(1(0200 Koy Dx)
Gr(Qyoe) € Mod?” (Op=(x,2))
Microsupport (characteristic variety)
Degree of involutivity
D-Hilbert scheme Hilbh

*Establishes a new connection between differential-algebraic constraints

and moduli-theoretic invariants
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The D-Hilbert Functor




Introduced parameterizing space of isomorphism classes of exact sequences,

Sequences (Zzx — Ojop — Oz
Quot(n,m, N, k) ::{ d tz T z )}

(15)

Isomorphism
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Introduced parameterizing space of isomorphism classes of exact sequences,

{Sequences (Zzo00o = Ogop — OZOC)}

t(n N, k) = 15
Quot(n, m, N, k) Isomorphism (15)
Restrict:
Quot™ (n,m, N, k) := {[Izoo] € (15)| (Spencer-regular) , integrable }
(16)
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Introduced parameterizing space of isomorphism classes of exact sequences,

Sequences (Zzoo — Oy — Ogoo
Quot(n,m, N, k) ;:{ 4 (Zz IR z)}

(15)

Isomorphism

Restrict:

Quot™ (n,m, N, k) := {[Izoo] € (15)| (Spencer-regular) , integrable }
(16)

Assigned numerical characterizations Pp(Oz~) € Q[z], tracking
homological complexity of symbolic system.
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Introduced parameterizing space of isomorphism classes of exact sequences,

{Sequences (Zzo00o = Ogop — OZOC)}

t(n N, k) = 15
Quot(n, m, N, k) Isomorphism (15)
Restrict:
Quot™ (n,m, N, k) := {[Izoo] € (15)| (Spencer-regular) , integrable }
(16)

Assigned numerical characterizations Pp(Oz) € Q[z], tracking
homological complexity of symbolic system.

Goal

Prove (16) defines a moduli functor.
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Main Results of [« 1]

The main result constructs the moduli functor and proves its
representability.

Theorem (K-S, arXiv:2507.07937 (2025))

Let X be a smooth D-affine algebraic variety of dimension n. Let m € N
represent the number of dependent variables and fiz P € Q[t]. Then there exists
a moduli functor classifying formally integrable (non-singular) algebraic
differential systems with specified (Spencer) regular symbolic behavior whose
numerical polynomial Pp is equal to P :

QuotDX (P;n,m)™ : Schx (Dx)°P — Sets,

There exists a sub-functor consisting of Spencer semi-stable differential ideals
representable by an (ind)-finite-type D-scheme.
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Method of proof

The notion of D-regularity and of the degree of involution behave

appropriately with respect to sequences.

Proposition (K-S, arXiv:2507.07937 (2025))
If Z is Spencer m-regular, then it is Spencer m/'-regular for all m’ > m. Moreover,
suppose there are smooth morphisms of D-schemes Z/ — Z — Z'/, with D-ideals
T',Z,7", respectively, inducing a short exact sequence of symbols. Suppose each
D-scheme is Spencer regular. The following statements hold:

o If Z' and Z'" are m-regular, then so is Z;

o If Z' is (m + 1)-regular and Z is m-regular then Z'’ is (m + 1)-regular;

o If Z is m-regular and Z'’ is (m — 1)-regular then Z’ is m-regular.
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Method of proof (4 la Grothendieck/Douady)

Proposition (K-S, arXiv:2507.07937 (2025))
Fix a numerical polynomial P. Consider a family {Z>°};cr of Spencer-regular
algebraic PDEs. The following two statements are equivalent:

e The family is bounded,;

e The set of D Hilbert polynomials { Pp(Oz)} is finite and there is a uniform
bound on the involutivity degrees i.e. Regp (Zs°) < p,Viel
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Method of proof (4 la Grothendieck/Douady)

e Analog of Mumford’s boundedness criterion:

Proposition (K-S, arXiv:2507.07937 (2025))
Fix a numerical polynomial P. Consider a family {Z>°};cr of Spencer-regular
algebraic PDEs. The following two statements are equivalent:

e The family is bounded,;

e The set of D Hilbert polynomials { Pp(Oz)} is finite and there is a uniform
bound on the involutivity degrees i.e. Regp (Zs°) < p,Viel

Namely, fixing an ambient D-scheme Z (e.g. JY E) and P, there exists
some integer p = p(P) such that for Z7° C Z with D-Hilbert polynomial
P; = P, its D-ideal sheaf has D-regularity p.
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Non-characteristic restriction

o PDE Leftschetz hyperplane theorem:

Theorem (K-S, arXiv:2507.07937 (2025))

Let Zzo be a D-involutive D-ideal sheaf. For j: H C T*X a
non-microcharacteristic analytic subset, denote by Zy the D-ideal obtain by
non-characteristic restriction. Then Regp(Zx ) = m if and only if
Regp(Zy) = m.
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Non-characteristic restriction

o PDE Leftschetz hyperplane theorem:

Theorem (K-S, arXiv:2507.07937 (2025))

Let Zzo be a D-involutive D-ideal sheaf. For j: H C T*X a
non-microcharacteristic analytic subset, denote by Zy the D-ideal obtain by
non-characteristic restriction. Then Regp(Zx ) = m if and only if
Regp(Zy) = m.

Spencer regularity is thus preserved under restriction to non-characteristic
subvarieties. This allows us to control local-to-global properties of symbolic
data.
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Main Result

A second result is the calculation of the Zariski tangent D-module.

Theorem (Theorem (K-S, arXiv:2507.07937 (2025)))
The tangent space at a point [Z] controlling first-order deformations of Z as a
D-ideal, is given by

TigHilbp  (JTE) =~ Homp, (Z,0(JF E)/I).
There is a space of obstructions Obs|z) which is a filtered D-module over the
D-scheme defined by T whose associated graded algebra is isomorphic to a

sub-quotient of the Ext' group giwing the (truncated) Spencer cohomology
determined by the symbol of T.
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GIT Quotients and Moduli of Spencer stable modules

One can prove a moduli space of Spencer stable finitely presented modules
(PDE analog of moduli of coherent sheaves).

There exists a locus: Quot%piss’im C Quot”, and for algebraic
pseudogroups G acting on points of Quot%” (P, n, m), we describe the
invariant quotient:

Quot%”_ss’m" (P,n,m)//G.

With G an Algebraic Lie pseudogroup: a family of algebraic sub-groups
{G*} of k-jets of bundle isomorphisms ¢ acting on E (covering
diffeomorphisms ¢ of X).

Actions lift to k-jet spaces: ¢®) : JEE — JEE, [s]k — [poso 9*1}];(1)7
functorially in E, X and jet-order, and restrict to PDEs Z, C JEE :

(k)
E_°,F JiE 2 gEkF
LA |
¢ o
X —Y JYE 25 JLF

We care about X =Y. 40



GIT Quotients

We describe the moduli space as a type of PDE-theoretic GIT-quotient.
o D-geometric Luna slice theorem:

Theorem (K-S, arXiv:2507.07937 (2025))

Given an algebraic action by a (formally integrable) Lie pseudogroup

CE= {Gk}kzo, on a D-scheme with ideal Z, the quotient equation exists and is
again an algebraic D-scheme, with ideal ZC. In particular, the (categorical)
quotient D-scheme [Z/G] := {[Z* /G¥]}},>0, corresponds to a geometric quotient.
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GIT Quotients

We describe the moduli space as a type of PDE-theoretic GIT-quotient.
o D-geometric Luna slice theorem:

Theorem (K-S, arXiv:2507.07937 (2025))

Given an algebraic action by a (formally integrable) Lie pseudogroup

CE= {Gk}kzo, on a D-scheme with ideal Z, the quotient equation exists and is
again an algebraic D-scheme, with ideal ZC. In particular, the (categorical)
quotient D-scheme [Z/G] := {[Z* /G¥]}},>0, corresponds to a geometric quotient.

Importantly, its numerical characterization behaves well (e.g. polynomially)
and its symbolic complexity is controlled (e.g. bounded).
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Application of Spencer-stability to
Non-abelian Hodge and DUY theorems




Stability and Extremal Problems

Solutions to Differential Geometric extremal problems correspond to
Algebro-Geometric stability questions.
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Stability and Extremal Problems

Solutions to Differential Geometric extremal problems correspond to

Algebro-Geometric stability questions.

Theorem (Donaldson ’85, Uhlenbeck-Yau ’85)

Let (X,w) be a compact Kahler manifold. A holomorphic vector bundle
E — (X,w) admits a Hermitian-Einstein metric if and only if it is slope
polystable.
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Stability and Extremal Problems

Solutions to Differential Geometric extremal problems correspond to

Algebro-Geometric stability questions.

Theorem (Donaldson ’85, Uhlenbeck-Yau ’85)

Let (X,w) be a compact Kahler manifold. A holomorphic vector bundle
E — (X,w) admits a Hermitian-Einstein metric if and only if it is slope
polystable.

Interpretation: Fuisicnce of PDE solulions «~ Stability.
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Stability and Extremal Problems

Solutions to Differential Geometric extremal problems correspond to

Algebro-Geometric stability questions.

Theorem (Donaldson ’85, Uhlenbeck-Yau ’85)

Let (X,w) be a compact Kahler manifold. A holomorphic vector bundle
E — (X,w) admits a Hermitian-Einstein metric if and only if it is slope
polystable.

Interpretation: Fuisicnce of PDE solulions «~ Stability.

Automorphisms: Stability = End(E) = C - id.
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Stability and Extremal Problems

Solutions to extremal problems correspond to

Algebro-Geometric stability questions.

Theorem (Donaldson ’85, Uhlenbeck-Yau ’85)
Let (X,w) be a compact Kahler manifold. A holomorphic vector bundle

E — (X,w) if and only if it is slope
polystable.
Interpretation: «w Stability.

Automorphisms: Stability = End(E) = C - id.

Remark

Many challenging and interesting open conjectures (e.g. Thomas-Yau,
Yau-Tian-Donaldson, higher rank cases, hypercritical phases, relations to HMS).
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Stability and Extremal Problems

Solutions to extremal problems correspond to

Algebro-Geometric stability questions.

Theorem (Donaldson ’85, Uhlenbeck-Yau ’85)
Let (X,w) be a compact Kahler manifold. A holomorphic vector bundle

E — (X,w) if and only if it is slope
polystable.
Interpretation: «w Stability.

Automorphisms: Stability = End(E) = C - id.

Remark
Many challenging and interesting open conjectures (e.g. Thomas-Yau,

Yau-Tian-Donaldson, higher rank cases, hypercritical phases, relations to HMS).

T. Bridgeland, Ann. of Math. 166 (2007) 317-345
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Relations to stability

The connection to stability questions we focus on arises from the
Non-Abelian Hodge Correspondence.

Theorem (Corlette, Simpson)

Let X be smooth projective and let (V, V) be a complex local system with
reductive monodromy. Let (E,0) be the associated polystable Higgs bundle
Then

H(X,(V,V)) = H'(X,(E,0)).

Recall: A Higgs bundle (E,0) of rank m is Ox (1)-stable (resp. semistable)
if for all # invariant subsheaves F' C F,

p(F) <p(E), (resp. p(F) <p(E)),

where p(F) := x(X; F® OX(m))/rk(F)7 is the reduced Hilbert polynomial
of F.
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Remarks

The Spencer-type polynomial stability encodes and generalizes
well-known sheaf-theoretic stability conditions.

Moduli Space Stability / Boundedness Condition
Moduli of coherent sheaves Gieseker/slope stability
Hilbert/Quot moduli functors Castelnuovo-Mumford regularity

Moduli of relative local systems  Semisimplicity / reductivity
Moduli of Higgs bundles Slope (poly)stability
D-Hilbert functor Spencer stability

Works for non-linear PDFEs on vector bundles, coherent sheaves, complexes,
objects D*(X), objects with stacky/derived structure etc.

Observation
Spencer-stability of PDEs imposed on bundles M of
bundles/sheaves.
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Application: Equation of flat connections

Let (X,w) be a compact Kéhler manifold and (£, V) a holomorphic vector
bundle of rank m with a flat connection V : E — E ® Q%. Consider the
Atiyah algebroid of E:

0 — End(F) — At(E) — Tx — 0,

where At(E) consists of first-order differential operators on E with symbol
in T'x. Dually, consider J% F the first jet bundle of E, and J¥ J% E its
infinite jet bundle. The flatness of V is encoded by a differential ideal

Iv C A:=O(Jg JxE)
generated by the differential equations defining the curvature. Denote
Bv = A/Iv,

the Dx-algebra of functions. The tangent space to the D-Hilbert functor at
[Iv] is
T[ZV]HﬂbD (.A) = HOIHA[DX] (Iv, Bv)
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Differential-algebraic stability criteria

Consider the associated graded of the jet filtration on Zv:

gr(Iv) = @szv/Fk+IIv,

k>0

where FkIv is the k-th jet order.

Then, the Spencer cohomology computes

HE (gr(Tv)) =~ HY(X, % ® End(E)).

There is a stability-type correspondence providing a purely PDE analog of
DUY and NAH theorems.

Theorem ((K-S, 2025)

Let (X,w) be a compact Kihler manifold. Then a holomorphic vector bundle E
admits a Hermitian- Yang-Mills metric if and only if the associated flat
connection V defines a Spencer-polystable differential ideal Z g v)-

The canonical ideal Z(g,v), corresponds to the equation of flat connections.

It encodes the infinitesimal geometry of flat bundles. 46



Further details

Connections on E are identified with sections of the affine bundle
w0 JY(E) — E. Put D(Q%) the module of Q% -valued derivations.

Connection form and Frolicher—Nijenhuis bracket

A section V of this bundle determines a decomposition d = Uy + Uy, where
Uy € D(QL) is defined by

X(Ov(f) = (VXm)(f), X € D(B), f € C¥(B),
and Uy := d — Uy is the vertical connection form.
] : D) x D(Q%) — D)

extends the Lie bracket of vector fields: V flat <= [Us, Uy = 0.

Intrinsic definition

The equation of flat connections is the submanifold
- 1 7 7 _
s = {91 c JN(E) ‘ [Ov,0v ]]mwl) = 0},

where 07 = [V}é is the 1-jet of any local representative connection V.

o The value of [[Uv, Uvﬂ at 0 depends on 0, € JY(E), not on the

choice of V. 4



Set-theoretic Spencer-NAH I1

Spencer-polystable differential ideals
J IV —
Pp(Os) < Pp(Zv)
f-invariant polystable subbundles
F C (E,0)
p(F) < p(E)

Example: D-stable sub-diffieties <> O-invariant sub-Higgs bundles.
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Set-theoretic Spencer-NAH I1

Spencer-polystable differential ideals
J IV —
Pp(Os) < Pp(Zv)
f-invariant polystable subbundles
F ¢ (E,0)
p(F) < p(E)
Example: D-stable sub-diffieties <> O-invariant sub-Higgs bundles.

Caution: this is not an equivalence of moduli spaces.
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Set-theoretic Spencer-NAH I1

Spencer-polystable differential ideals
Jcr1v —
Pp(Os) < Pp(Zv)
f-invariant polystable subbundles
F ¢ (E,0)
p(F) < p(E)

Example: D-stable sub-diffieties <> O-invariant sub-Higgs bundles.

this is not an equivalence of moduli spaces.
Important observation
These constructions can be extended:
EwE*:=[..B % E+ 4
frobm bundles F to complexes E*® or more general objects of the derived category
D" (X).

Spencer-stability as PDE-stability provides a criteria for on
these objects! 48



D-Quot DG-Scheme




Derived D-Geometry

Natural to ask:

Question

Is there a derived enhancement ? Is it representable?
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Derived D-Geometry

Natural to ask:

Question

Is there a derived enhancement RQuotp 7 Is it representable?

Use a natural derived enhancement to D-geometry:
Algebraic D-Geometry ~ Derived D-Geometry

Schx (Dx) C Fun(CAlgy (Dx)°?, SETS) ~ dStkx (Dx) C dPStkx (Dx).
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Derived D-Geometry

Natural to ask:
Question

Is there a derived enhancement RQuotp 7 Is it representable?

Use a natural derived enhancement to D-geometry:
Algebraic D-Geometry ~ Derived D-Geometry

Schx (Dx) C Fun(CAlgy (Dx)°?, SETS) ~ dStkx (Dx) C dPStkx (Dx).

In a paraphrased form the main result of Part IT [KSh2]
Theorem (K-S, arXiv:2411.02387, (2025))

Consider Theorem 1. It has a natural derived enhancement given by the D-Quot
functor Quoty 5. It is a D-simplicial presheaf (satisfying descent) which is
moreover representable by a dg-D-manifold of D-finite presentation.
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Derived D-Geometry

Natural to ask:

Question

Is there a derived enhancement RQuotp 7 Is it representable?

Use a natural derived enhancement to D-geometry:
Algebraic D-Geometry ~ Derived D-Geometry

Schx (Dx) C Fun(CAlgy (Dx)?, SETS) ~ dStkx (Dx) C dPStkx (Dx).

In a paraphrased form the main result of Part IT [KSh2]
Theorem (K-S, arXiv:2411.02387, (2025))

Consider Theorem 1. It has a natural derived enhancement given by the D-Quot
functor Quoty 5. It is a D-simplicial presheaf (satisfying descent) which is
moreover representable by a dg-D-manifold of D-finite presentation.

Realizes an underlying classical finite-type D-scheme as the classical
truncation of a dg-D-manifold obtained as a simplicial diagram of
dg-schemes modulo actions of Lie pseudogroups (the D-Quot dg-manifold). 49



Idea of proof

Solve the derived moduli problem: selecting mo € N large enough to ensure
involutivity of Y, we want to classify As-submodules in a certain category

of Dx-modules, of the form

>mg >mo» wit im k)= 5 ZmO-
Nsmg < Ch>mg h dim(Ng) = hP (k), Vk

Rmk. Having a (graded) submodule N, + < Ch is expressed via algebra
relations on a product,

Grigq = H Gr(dim(./\/s),Chs).

a<s<t
N.B! Since symbol/characteristic modules are finitely-cogenerated if the
equation is involutive and formally integrable.

We may can choose a basis in Ny < Ch, and this generates actions of Gl of
rank P(s) on N.



Technical remarks

Solve in a ‘stretch’ [a,t]: extend beyond via MC-equations.
Based on constructing a dg-Lie algebra object in D-modules,
gga;t = Pf:m]u*({AuNza}§M) S P[*n]u{*}({fl,./\/’za}; Cht),

then, roughly speaking, one proceeds as follows:

o Use Koszul duality ~ dg-commutative algebra object e.g. generated by
g°[—1] leading to a (formal derived D-stack)

Via,a+2) := Spec_ (C’E"® (g;,t[l])o). (17)
We end up with a sequence of formal derived D-stacks,
e y[a,a+2] — y[a,a+1] — yay (18)

e Look at the ‘injectivity’ locus (so sub-module structures, not just
Aoc-morphisms)

e Take a geometric quotient and computing a colimit (reduction to a
D-geometric Postnikov-type sequence).



Thank you for your attention!
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