

\mathcal{D} -Geometric Hilbert and Quot DG-Schemes

(Derived Hilbert scheme of solutions to Nonlinear PDE)

Artan Sheshmani (BIMSA)

Joint work with **J. Kryczka**, & **J. Kryczka- S.T. Yau**

Birational Geometry Seminar

January 30, UCLA (2026)

Introduction

Goal

Study global (virtual) geometry of (derived) enhancements of moduli spaces of solutions to non-linear PDEs and their deformations (+ enumerative problems, DT/GW/PT-theory, Mirror symmetry ...).

Based on [arXiv:2507.07937](https://arxiv.org/abs/2507.07937) and [arXiv:2411.02387](https://arxiv.org/abs/2411.02387) (with J.Kryczka) and previous work with J. Kryczka-A.S and S-T.Yau:

- Derived Moduli of Solutions to (Nonlinear) PDEs: Part I [KSY] and Part II [KSY2] (Kryczka-S-Yau)
- Hilbert and Quot Schemes for PDEs: Part I [KSh] and Part II [KSh2]

Introduction

Goal

Study global (virtual) geometry of (derived) enhancements of moduli spaces of solutions to non-linear PDEs and their deformations (+ enumerative problems, DT/GW/PT-theory, Mirror symmetry ...).

Based on [arXiv:2507.07937](https://arxiv.org/abs/2507.07937) and [arXiv:2411.02387](https://arxiv.org/abs/2411.02387) (with J.Kryczka) and previous work with J. Kryczka-A.S and S-T.Yau:

- Derived Moduli of Solutions to (Nonlinear) PDEs: Part I [KSY] and Part II [KSY2] (Kryczka-S-Yau)
- Hilbert and Quot Schemes for PDEs: Part I [KSh] and Part II [KSh2]

Introduction

Goal

Study global (virtual) geometry of (derived) enhancements of moduli spaces of solutions to non-linear PDEs and their deformations (+ enumerative problems, DT/GW/PT-theory, Mirror symmetry ...).

Based on [arXiv:2507.07937](https://arxiv.org/abs/2507.07937) and [arXiv:2411.02387](https://arxiv.org/abs/2411.02387) (with J.Kryczka) and previous work with J. Kryczka-A.S and S-T.Yau:

- **Derived Moduli of Solutions to (Nonlinear) PDEs:** Part I [[KSY](#)] and Part II [[KSY2](#)] (Kryczka-S-Yau)
- **Hilbert and Quot Schemes for PDEs:** Part I [[KSh](#)] and Part II [[KSh2](#)]

Introduction

Goal

Study global (virtual) geometry of (derived) enhancements of moduli spaces of solutions to non-linear PDEs and their deformations (+ enumerative problems, DT/GW/PT-theory, Mirror symmetry ...).

Based on [arXiv:2507.07937](https://arxiv.org/abs/2507.07937) and [arXiv:2411.02387](https://arxiv.org/abs/2411.02387) (with J.Kryczka) and previous work with J. Kryczka-A.S and S-T.Yau:

- **Derived Moduli of Solutions to (Nonlinear) PDEs:** Part I [[KSY](#)] and Part II [[KSY2](#)] (Kryczka-S-Yau)
- **Hilbert and Quot Schemes for PDEs:** Part I [[KSh](#)] and Part II [[KSh2](#)]

The road-map:

- Analytic presentation $F(x, u, \partial_x^\sigma u) = 0, \Rightarrow$ geometric object $Z_k = \{F = 0\}.$
- Obtain a stable object Z^∞ via the formal theory of integrability.
Yields a differential ideal \mathcal{I}_{Z^∞} from a family of compatible finite-order *algebraic* ideals $\{I_k : k \geq 0\}.$
- Associated canonical algebraic structures - symbolic/characteristic module $\mathcal{M}_\bullet.$
- **Geometric integrability** conditions on Z^∞ induce **algebraic regularity** conditions on \mathcal{M}_\bullet (realized via Koszul, Spencer complexes).
- Numerical polynomial $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, via these resolutions of $\mathcal{M}_\bullet.$
- A space $\text{Quot}_{\mathcal{D}}^P$ parameterizing sub-schemes Z^∞ with \mathcal{M}_\bullet of prescribed regularity, induced by **fixing** $P \in \mathbb{Q}[t]$ and requiring $P_{\mathcal{D}} = P.$

The road-map:

- Analytic presentation $F(x, u, \partial_x^\sigma u) = 0, \Rightarrow$ geometric object $Z_k = \{F = 0\}.$
- Obtain a stable object Z^∞ via the formal theory of integrability.
Yields a differential ideal \mathcal{I}_{Z^∞} from a family of compatible finite-order *algebraic* ideals $\{I_k : k \geq 0\}.$
- Associated canonical algebraic structures - symbolic/characteristic module $\mathcal{M}_\bullet.$
- **Geometric integrability** conditions on Z^∞ induce **algebraic regularity** conditions on \mathcal{M}_\bullet (realized via Koszul, Spencer complexes).
- Numerical polynomial $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, via these resolutions of $\mathcal{M}_\bullet.$
- A space $\text{Quot}_{\mathcal{D}}^P$ parameterizing sub-schemes Z^∞ with \mathcal{M}_\bullet of prescribed regularity, induced by **fixing** $P \in \mathbb{Q}[t]$ and requiring $P_{\mathcal{D}} = P.$

The road-map:

- Analytic presentation $F(x, u, \partial_x^\sigma u) = 0, \Rightarrow$ geometric object $Z_k = \{F = 0\}.$
- Obtain a stable object Z^∞ via the formal theory of integrability.
Yields a differential ideal \mathcal{I}_{Z^∞} from a family of compatible finite-order *algebraic* ideals $\{I_k : k \geq 0\}.$
- Associated canonical algebraic structures - symbolic/characteristic module $\mathcal{M}_\bullet.$
- Geometric integrability conditions on Z^∞ induce algebraic regularity conditions on \mathcal{M}_\bullet (realized via Koszul, Spencer complexes).
- Numerical polynomial $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, via these resolutions of $\mathcal{M}_\bullet.$
- A space $\text{Quot}_{\mathcal{D}}^P$ parameterizing sub-schemes Z^∞ with \mathcal{M}_\bullet of prescribed regularity, induced by fixing $P \in \mathbb{Q}[t]$ and requiring $P_{\mathcal{D}} = P.$

The road-map:

- Analytic presentation $F(x, u, \partial_x^\sigma u) = 0, \Rightarrow$ geometric object $Z_k = \{F = 0\}.$
- Obtain a stable object Z^∞ via the formal theory of integrability.
Yields a differential ideal \mathcal{I}_{Z^∞} from a family of compatible finite-order *algebraic* ideals $\{I_k : k \geq 0\}.$
- Associated canonical algebraic structures - symbolic/characteristic module $\mathcal{M}_\bullet.$
- **Geometric integrability** conditions on Z^∞ induce **algebraic regularity** conditions on \mathcal{M}_\bullet (realized via Koszul, Spencer complexes).
- Numerical polynomial $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, via these resolutions of $\mathcal{M}_\bullet.$
- A space $\mathcal{Quot}_{\mathcal{D}}^P$ parameterizing sub-schemes Z^∞ with \mathcal{M}_\bullet of prescribed regularity, induced by **fixing** $P \in \mathbb{Q}[t]$ and requiring $P_{\mathcal{D}} = P.$

Overview and strategy: PDE analogs of Hilb, Quot

The road-map:

- Analytic presentation $F(x, u, \partial_x^\sigma u) = 0, \Rightarrow$ geometric object $Z_k = \{F = 0\}.$
- Obtain a stable object Z^∞ via the formal theory of integrability.
Yields a differential ideal \mathcal{I}_{Z^∞} from a family of compatible finite-order *algebraic* ideals $\{I_k : k \geq 0\}.$
- Associated canonical algebraic structures - symbolic/characteristic module $\mathcal{M}_\bullet.$
- **Geometric integrability** conditions on Z^∞ induce **algebraic regularity** conditions on \mathcal{M}_\bullet (realized via Koszul, Spencer complexes).
- Numerical polynomial $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, via these resolutions of $\mathcal{M}_\bullet.$
- A space $\mathcal{Quot}_{\mathcal{D}}^P$ parameterizing sub-schemes Z^∞ with \mathcal{M}_\bullet of prescribed regularity, induced by **fixing** $P \in \mathbb{Q}[t]$ and requiring $P_{\mathcal{D}} = P.$

The road-map:

- Analytic presentation $F(x, u, \partial_x^\sigma u) = 0, \Rightarrow$ geometric object $Z_k = \{F = 0\}.$
- Obtain a stable object Z^∞ via the formal theory of integrability.
Yields a differential ideal \mathcal{I}_{Z^∞} from a family of compatible finite-order *algebraic* ideals $\{I_k : k \geq 0\}.$
- Associated canonical algebraic structures - symbolic/characteristic module $\mathcal{M}_\bullet.$
- **Geometric integrability** conditions on Z^∞ induce **algebraic regularity** conditions on \mathcal{M}_\bullet (realized via Koszul, Spencer complexes).
- Numerical polynomial $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, via these resolutions of $\mathcal{M}_\bullet.$
- A space $\mathcal{Quot}_{\mathcal{D}}^P$ parameterizing sub-schemes Z^∞ with \mathcal{M}_\bullet of prescribed regularity, induced by **fixing** $P \in \mathbb{Q}[t]$ and requiring $P_{\mathcal{D}} = P.$

Systems of NLPDEs

A **system of N differential equations** for a vector-valued function $u = (u^1, \dots, u^m)$ of variables $x = (x_1, \dots, x_n)$ is:

$$Z_k := \begin{cases} F_1(x, u, \frac{\partial u}{\partial x}, \dots, \frac{\partial^k u}{\partial x^k}, \dots, \frac{\partial^{|\sigma|} u}{\partial x_\sigma}) = 0, \\ \vdots \\ F_N(x, u, \frac{\partial u}{\partial x}, \dots, \frac{\partial^k u}{\partial x^k}, \dots, \frac{\partial^{|\sigma|} u}{\partial x_\sigma}) = 0. \end{cases} \quad (1)$$

Derivatives $u_\sigma^\alpha := \frac{\partial^{|\sigma|} u^\alpha}{\partial x_\sigma}$, for $\alpha = 1, \dots, m$: multi-index notation
 $\sigma = (\sigma_1, \dots, \sigma_n) \in \mathbb{N}^n$ with *length* $|\sigma| := \sigma_1 + \dots + \sigma_n \leq k$ (*order*).

Simplifying assumption: The orders of each $F_A, A = 1, \dots, N$ are the same.

- Z_k is the zero locus of (1) in **k -jet space** $J_X^k E \ni (x^i, u^\alpha, u_\sigma^\alpha)$ i.e.

$$\dim = n + m \binom{n+k}{k}$$

$$\mathcal{O}_{Z_k} = \mathcal{O}_{J_X^k E} / I_k, \text{ with } I_k = \text{span}\{(1)\}.$$

Remark 1. The structure sheaf $\mathcal{O}_{J_X^k(E)}$ is the k 'th-jet sheaf $J^k(E^\vee)$.

Reminder from Algebraic Geometry

First jets can be obtained by considering **first order Nilpotent Thickening of Diagonal**. Given $\Delta : X \hookrightarrow X \times X$ consider the canonical short exact sequence:

$$0 \rightarrow \mathcal{I}_\Delta \rightarrow \mathcal{O}_{X \times X} \rightarrow \Delta_* \mathcal{O}_X =: \mathcal{O}_\Delta \rightarrow 0 \quad (2)$$

Thickening Δ in $X \times X$ we obtain

$$0 \rightarrow \mathcal{I}_\Delta^2 \rightarrow \mathcal{O}_{X \times X} \rightarrow \mathcal{O}_{2\Delta} \rightarrow 0 \quad (3)$$

It is then seen that the following s.e.s. holds true:

$$0 \rightarrow \mathcal{I}/\mathcal{I}^2 \rightarrow \mathcal{O}_{2\Delta} \rightarrow \mathcal{O}_\Delta \rightarrow 0 \quad (4)$$

After projection via $p : X \times X \rightarrow X$ we obtain

$$0 \rightarrow \Omega_X^1 \rightarrow p_*(\mathcal{O}_{2\Delta}) := J^1(\mathcal{O}_X) \rightarrow \mathcal{O}_X \rightarrow 0 \quad (5)$$

Similarly, we can apply k -fold jet construction to a sheaf E^\vee and obtain:

$$0 \rightarrow \text{Sym}^k \Omega_X^1 \otimes E^\vee \rightarrow J_X^k(E^\vee) \rightarrow J_X^{k-1}(E^\vee) \rightarrow 0 \quad (6)$$

Reminder from Algebraic Geometry

First jets can be obtained by considering **first order Nilpotent Thickening of Diagonal**. Given $\Delta : X \hookrightarrow X \times X$ consider the canonical short exact sequence:

$$0 \rightarrow \mathcal{I}_\Delta \rightarrow \mathcal{O}_{X \times X} \rightarrow \Delta_* \mathcal{O}_X =: \mathcal{O}_\Delta \rightarrow 0 \quad (2)$$

Thickening Δ in $X \times X$ we obtain

$$0 \rightarrow \mathcal{I}_\Delta^2 \rightarrow \mathcal{O}_{X \times X} \rightarrow \mathcal{O}_{2\Delta} \rightarrow 0 \quad (3)$$

It is then seen that the following s.e.s. holds true:

$$0 \rightarrow \mathcal{I}/\mathcal{I}^2 \rightarrow \mathcal{O}_{2\Delta} \rightarrow \mathcal{O}_\Delta \rightarrow 0 \quad (4)$$

After projection via $p : X \times X \rightarrow X$ we obtain

$$0 \rightarrow \Omega_X^1 \rightarrow p_*(\mathcal{O}_{2\Delta}) := J^1(\mathcal{O}_X) \rightarrow \mathcal{O}_X \rightarrow 0 \quad (5)$$

Similarly, we can apply k -fold jet construction to a sheaf E^\vee and obtain:

$$0 \rightarrow \text{Sym}^k \Omega_X^1 \otimes E^\vee \rightarrow J_X^k(E^\vee) \rightarrow J_X^{k-1}(E^\vee) \rightarrow 0 \quad (6)$$

Reminder from Algebraic Geometry

First jets can be obtained by considering **first order Nilpotent Thickening of Diagonal**. Given $\Delta : X \hookrightarrow X \times X$ consider the canonical short exact sequence:

$$0 \rightarrow \mathcal{I}_\Delta \rightarrow \mathcal{O}_{X \times X} \rightarrow \Delta_* \mathcal{O}_X =: \mathcal{O}_\Delta \rightarrow 0 \quad (2)$$

Thickening Δ in $X \times X$ we obtain

$$0 \rightarrow \mathcal{I}_\Delta^2 \rightarrow \mathcal{O}_{X \times X} \rightarrow \mathcal{O}_{2\Delta} \rightarrow 0 \quad (3)$$

It is then seen that the following s.e.s. holds true:

$$0 \rightarrow \mathcal{I}/\mathcal{I}^2 \rightarrow \mathcal{O}_{2\Delta} \rightarrow \mathcal{O}_\Delta \rightarrow 0 \quad (4)$$

After projection via $p : X \times X \rightarrow X$ we obtain

$$0 \rightarrow \Omega_X^1 \rightarrow p_*(\mathcal{O}_{2\Delta}) := J^1(\mathcal{O}_X) \rightarrow \mathcal{O}_X \rightarrow 0 \quad (5)$$

Similarly, we can apply k -fold jet construction to a sheaf E^\vee and obtain:

$$0 \rightarrow \text{Sym}^k \Omega_X^1 \otimes E^\vee \rightarrow J_X^k(E^\vee) \rightarrow J_X^{k-1}(E^\vee) \rightarrow 0 \quad (6)$$

Reminder from Algebraic Geometry

First jets can be obtained by considering **first order Nilpotent Thickening of Diagonal**. Given $\Delta : X \hookrightarrow X \times X$ consider the canonical short exact sequence:

$$0 \rightarrow \mathcal{I}_\Delta \rightarrow \mathcal{O}_{X \times X} \rightarrow \Delta_* \mathcal{O}_X =: \mathcal{O}_\Delta \rightarrow 0 \quad (2)$$

Thickening Δ in $X \times X$ we obtain

$$0 \rightarrow \mathcal{I}_\Delta^2 \rightarrow \mathcal{O}_{X \times X} \rightarrow \mathcal{O}_{2\Delta} \rightarrow 0 \quad (3)$$

It is then seen that the following s.e.s. holds true:

$$0 \rightarrow \mathcal{I}/\mathcal{I}^2 \rightarrow \mathcal{O}_{2\Delta} \rightarrow \mathcal{O}_\Delta \rightarrow 0 \quad (4)$$

After projection via $p : X \times X \rightarrow X$ we obtain

$$0 \rightarrow \Omega_X^1 \rightarrow p_*(\mathcal{O}_{2\Delta}) := J^1(\mathcal{O}_X) \rightarrow \mathcal{O}_X \rightarrow 0 \quad (5)$$

Similarly, we can apply k -fold jet construction to a sheaf E^\vee and obtain:

$$0 \rightarrow \text{Sym}^k \Omega_X^1 \otimes E^\vee \rightarrow J_X^k(E^\vee) \rightarrow J_X^{k-1}(E^\vee) \rightarrow 0 \quad (6)$$

Reminder from Algebraic Geometry

First jets can be obtained by considering **first order Nilpotent Thickening of Diagonal**. Given $\Delta : X \hookrightarrow X \times X$ consider the canonical short exact sequence:

$$0 \rightarrow \mathcal{I}_\Delta \rightarrow \mathcal{O}_{X \times X} \rightarrow \Delta_* \mathcal{O}_X =: \mathcal{O}_\Delta \rightarrow 0 \quad (2)$$

Thickening Δ in $X \times X$ we obtain

$$0 \rightarrow \mathcal{I}_\Delta^2 \rightarrow \mathcal{O}_{X \times X} \rightarrow \mathcal{O}_{2\Delta} \rightarrow 0 \quad (3)$$

It is then seen that the following s.e.s. holds true:

$$0 \rightarrow \mathcal{I}/\mathcal{I}^2 \rightarrow \mathcal{O}_{2\Delta} \rightarrow \mathcal{O}_\Delta \rightarrow 0 \quad (4)$$

After projection via $p : X \times X \rightarrow X$ we obtain

$$0 \rightarrow \Omega_X^1 \rightarrow p_*(\mathcal{O}_{2\Delta}) := J^1(\mathcal{O}_X) \rightarrow \mathcal{O}_X \rightarrow 0 \quad (5)$$

Similarly, we can apply k -fold jet construction to a sheaf E^\vee and obtain:

$$0 \rightarrow \text{Sym}^k \Omega_X^1 \otimes E^\vee \rightarrow J_X^k(E^\vee) \rightarrow J_X^{k-1}(E^\vee) \rightarrow 0 \quad (6)$$

Context

The restriction $Sym^k \Omega_X^1 \otimes E^\vee |_{Z_k}$ is called order k Co-symbol of PDE Z_k . Differential operators $P : E \rightarrow F$ of order $\leq k$ between vector bundles (or coherent sheaves) are equivalently \mathcal{O}_X -linear morphisms F_P ,

$$P \in \mathcal{D}_X^{\leq k}(E, F) \simeq F_P \in \mathcal{H}om(J_X^k E, F), \text{ via } P = F_P \circ j_k.$$

Prolonged operators: $F_P^{(\ell)} : J_X^{\ell+k} E \rightarrow J_X^\ell F, \ell \geq 0$, via $F_P^{(\ell)} := F_{j_\ell \circ P}$.

- Obtain $Z^\infty = \ker(F_P^{(\infty)})$, by considering $Z_k := \{F_P = 0\}$ together with all differential consequences

$$Z^\infty := Z_k \cup \bigcup_{\ell \geq 0} Z_k^{(\ell)} \simeq \{D_\sigma F_P = 0 | \sigma \text{ multi-index } |\sigma| \geq 0 \text{ (unbounded)}\}.$$

- $\mathcal{O}_{Z_k^{(\ell)}} = \mathcal{O}_{J_X^{k+\ell} E} / I_{k+\ell}$, with $I_{k+\ell} = \{F_P, D_\sigma F_P : |\sigma| \leq \ell\}$.

Remark. Ideals \mathcal{I}_{Z^∞} are ‘differentially-generated’ = algebraically generated by $D_i(F)$

$$D_i := \frac{\partial}{\partial x_i} + \sum_{\alpha=1}^m \sum_{|\sigma| \geq 0} u_{\sigma+1i}^\alpha \frac{\partial}{\partial u_\sigma^\alpha}, \quad (\text{total derivative}). \quad (7)$$

Defines an integrable distribution $\mathcal{C} : \partial_i \mapsto D_i$ (flat connection)

Context

The restriction $Sym^k \Omega_X^1 \otimes E^\vee |_{Z_k}$ is called order k Co-symbol of PDE Z_k . Differential operators $P : E \rightarrow F$ of order $\leq k$ between vector bundles (or coherent sheaves) are equivalently \mathcal{O}_X -linear morphisms F_P ,

$$P \in \mathcal{D}_X^{\leq k}(E, F) \simeq F_P \in \mathcal{H}om(J_X^k E, F), \text{ via } P = F_P \circ j_k.$$

Prolonged operators: $F_P^{(\ell)} : J_X^{\ell+k} E \rightarrow J_X^\ell F, \ell \geq 0$, via $F_P^{(\ell)} := F_{j_\ell \circ P}$.

- Obtain $Z^\infty = \ker(F_P^{(\infty)})$, by considering $Z_k := \{F_P = 0\}$ together with all differential consequences

$$Z^\infty := Z_k \cup \bigcup_{\ell \geq 0} Z_k^{(\ell)} \simeq \{D_\sigma F_P = 0 | \sigma \text{ multi-index } |\sigma| \geq 0 \text{ (unbounded)}\}.$$

- $\mathcal{O}_{Z_k^{(\ell)}} = \mathcal{O}_{J_X^{k+\ell} E} / I_{k+\ell}$, with $I_{k+\ell} = \{F_P, D_\sigma F_P : |\sigma| \leq \ell\}$.

Remark. Ideals \mathcal{I}_{Z^∞} are ‘differentially-generated’ = algebraically generated by $D_i(F)$

$$D_i := \frac{\partial}{\partial x_i} + \sum_{\alpha=1}^m \sum_{|\sigma| \geq 0} u_{\sigma+1i}^\alpha \frac{\partial}{\partial u_\sigma^\alpha}, \quad (\text{total derivative}). \quad (7)$$

Defines an integrable distribution $\mathcal{C} : \partial_i \mapsto D_i$ (flat connection)

Context

The restriction $Sym^k \Omega_X^1 \otimes E^\vee |_{Z_k}$ is called order k Co-symbol of PDE Z_k . Differential operators $P : E \rightarrow F$ of order $\leq k$ between vector bundles (or coherent sheaves) are equivalently \mathcal{O}_X -linear morphisms F_P ,

$$P \in \mathcal{D}_X^{\leq k}(E, F) \simeq F_P \in \mathcal{H}om(J_X^k E, F), \text{ via } P = F_P \circ j_k.$$

Prolonged operators: $F_P^{(\ell)} : J_X^{\ell+k} E \rightarrow J_X^\ell F, \ell \geq 0$, via $F_P^{(\ell)} := F_{j_\ell \circ P}$.

- Obtain $Z^\infty = \ker(F_P^{(\infty)})$, by considering $Z_k := \{F_P = 0\}$ together with all differential consequences

$$Z^\infty := Z_k \cup \bigcup_{\ell \geq 0} Z_k^{(\ell)} \simeq \{D_\sigma F_P = 0 | \sigma \text{ multi-index } |\sigma| \geq 0 \text{ (unbounded)}\}.$$

- $\mathcal{O}_{Z_k^{(\ell)}} = \mathcal{O}_{J_X^{k+\ell} E} / I_{k+\ell}$, with $I_{k+\ell} = \{F_P, D_\sigma F_P : |\sigma| \leq \ell\}$.

Remark. Ideals \mathcal{I}_{Z^∞} are ‘differentially-generated’ = algebraically generated by $D_i(F)$

$$D_i := \frac{\partial}{\partial x_i} + \sum_{\alpha=1}^m \sum_{|\sigma| \geq 0} u_{\sigma+1i}^\alpha \frac{\partial}{\partial u_\sigma^\alpha}, \quad (\text{total derivative}). \quad (7)$$

Defines an integrable distribution $\mathcal{C} : \partial_i \mapsto D_i$ (flat connection)

Context

The restriction $Sym^k \Omega_X^1 \otimes E^\vee |_{Z_k}$ is called order k Co-symbol of PDE Z_k . Differential operators $P : E \rightarrow F$ of order $\leq k$ between vector bundles (or coherent sheaves) are equivalently \mathcal{O}_X -linear morphisms F_P ,

$$P \in \mathcal{D}_X^{\leq k}(E, F) \simeq F_P \in \mathcal{H}om(J_X^k E, F), \text{ via } P = F_P \circ j_k.$$

Prolonged operators: $F_P^{(\ell)} : J_X^{\ell+k} E \rightarrow J_X^\ell F, \ell \geq 0$, via $F_P^{(\ell)} := F_{j_\ell \circ P}$.

- Obtain $Z^\infty = \ker(F_P^{(\infty)})$, by considering $Z_k := \{F_P = 0\}$ together with all differential consequences

$$Z^\infty := Z_k \cup \bigcup_{\ell \geq 0} Z_k^{(\ell)} \simeq \{D_\sigma F_P = 0 | \sigma \text{ multi-index } |\sigma| \geq 0 \text{ (unbounded)}\}.$$

- $\mathcal{O}_{Z_k^{(\ell)}} = \mathcal{O}_{J_X^{k+\ell} E} / I_{k+\ell}$, with $I_{k+\ell} = \{F_P, D_\sigma F_P : |\sigma| \leq \ell\}$.

Remark. Ideals \mathcal{I}_{Z^∞} are ‘differentially-generated’ = algebraically generated by $D_i(F)$

$$D_i := \frac{\partial}{\partial x_i} + \sum_{\alpha=1}^m \sum_{|\sigma| \geq 0} u_{\sigma+1i}^\alpha \frac{\partial}{\partial u_\sigma^\alpha}, \quad (\text{total derivative}). \quad (7)$$

Defines an integrable distribution $\mathcal{C} : \partial_i \mapsto D_i$ (flat connection)

Context

The restriction $Sym^k \Omega_X^1 \otimes E^\vee |_{Z_k}$ is called order k Co-symbol of PDE Z_k . Differential operators $P : E \rightarrow F$ of order $\leq k$ between vector bundles (or coherent sheaves) are equivalently \mathcal{O}_X -linear morphisms F_P ,

$$P \in \mathcal{D}_X^{\leq k}(E, F) \simeq F_P \in \mathcal{H}om(J_X^k E, F), \text{ via } P = F_P \circ j_k.$$

Prolonged operators: $F_P^{(\ell)} : J_X^{\ell+k} E \rightarrow J_X^\ell F, \ell \geq 0$, via $F_P^{(\ell)} := F_{j_\ell \circ P}$.

- Obtain $Z^\infty = \ker(F_P^{(\infty)})$, by considering $Z_k := \{F_P = 0\}$ together with all differential consequences

$$Z^\infty := Z_k \cup \bigcup_{\ell \geq 0} Z_k^{(\ell)} \simeq \{D_\sigma F_P = 0 | \sigma \text{ multi-index } |\sigma| \geq 0 \text{ (unbounded)}\}.$$

- $\mathcal{O}_{Z_k^{(\ell)}} = \mathcal{O}_{J_X^{k+\ell} E} / I_{k+\ell}$, with $I_{k+\ell} = \{F_P, D_\sigma F_P : |\sigma| \leq \ell\}$.

Remark. Ideals \mathcal{I}_{Z^∞} are ‘differentially-generated’ = algebraically generated by $D_i(F)$

$$D_i := \frac{\partial}{\partial x_i} + \sum_{\alpha=1}^m \sum_{|\sigma| \geq 0} u_{\sigma+1_i}^\alpha \frac{\partial}{\partial u_\sigma^\alpha}, \quad (\text{total derivative}). \quad (7)$$

Defines an integrable distribution $\mathcal{C} : \partial_i \mapsto D_i$ (flat connection)

What is a PDE?

Forgetting derivatives gives a jet-tower:

$$\cdots \rightarrow J_X^{k+\ell} E \xrightarrow{\pi_{k+\ell-1}^{k+\ell}} J_X^{k+\ell-1} E \rightarrow \cdots \rightarrow J_X^k E \rightarrow J_X^{k-1} E \rightarrow \cdots \rightarrow E \rightarrow X.$$

Considering $Z_k = \{F(x, u(x), \partial_x^\sigma u(x) = 0\} \hookrightarrow J_X^k E$, two main operations:

- **Projection:** The r -fold projection, $\rho_r(Z_k) := \pi_{k-r}^k(Z_k) \subseteq J_X^{k-r} E$.
- **Prolongation:** $\text{pr}_1(Z_k) := J_X^1(Z_k) \times_{J_X^1(J_X^k E)} J_X^{k+1} E$,

$$\text{Put } p^k := \pi^l|_{Z_k} : Z_k \rightarrow X \Rightarrow Z_{k+r} := \text{pr}_r(Z_k) = J_X^r(p_k) \cap J_X^{q+r} E \subseteq J_X^{q+r}.$$

Remark 1. Neither $\rho_r(Z_{k-r})$ nor Z_{k+r} are smooth in general (not relevant for us).

Remark 2. More simply $\rho_k Z_k \subseteq Z_{k-1}$ and $\text{pr}_1(Z_k) \supseteq Z_{k+1}$ (not equality!).

Remark 3. They are not inverse operations: take $Z_k \subset J_X^k E$ prolong $Z_{k+r} \subseteq J_X^{k+r}$ and project back to $J_X^k E$, we only get $\rho_r Z_k \subseteq Z_k$ (not equality!).

What is a PDE?

Ex. $Z_0^{wave} := \{F = u_{00} - cu_{ii} = 0\} \hookrightarrow J_X^2 E \simeq k[t, x_1, \dots, x_n, u, u_i, u_{ij}]$.

$$\leadsto Z^{(\infty)} = \{u_{\sigma 00} = cu_{\sigma ii}, |\sigma| \geq 0\}.$$

Key point (Vinogradov's Philosophy)

A PDE $Z \hookrightarrow J_X^k E$ should be understood in terms of its infinite-prolongation $Z^{(\infty)}$ as a sub-space of $J_X^\infty E$.

Since analytic presentations are just one representative, may lead to ambiguities:

Ex. $Z := \{u_{xx}u_{tt}^2 + u_{tx}^2 + (u_x^2 - u_t)u = 0\}$, and

$$Z' := \begin{cases} u_x = v, \\ u_t = w, \\ v_x w_t^2 + v_t w_x + (v^2 - w)u = 0. \end{cases}$$

Equivalent, but can not be compared at face value (live in different jet-spaces;
 $Z \subset J^2(E)$ with $\dim(E) = 3$ and $Z' \subset J^1(E')$ with $\dim(E') = 5$.)

What is a PDE?

Thus we can not compare intrinsic structure in a unified way between the two presentations e.g. can not discuss symmetries, solutions, conservation laws etc.

Assemble integrability conditions arising at finite jet/prolongation orders into a single geometric object \Rightarrow Algebraic \mathcal{D} -schemes (stacks, higher stacks etc.)

Infinite prolongations: a system of non-linear PDEs Z of k -th order is a family of sub-schemes $Z^\ell \subset J_X^\ell E$ for all $\ell \in \mathbb{N}$ where $\ell \geq k$. It is given as a tower of surjective submersions with inverse limit $Z^\infty = \varinjlim Z^\ell$.

Prolongation \Rightarrow tower of schemes:

$$\cdots \rightarrow Z_{k+\ell} \xrightarrow{p_{k+\ell-1}^{k+\ell}} Z_{k+\ell-1} \rightarrow \cdots \rightarrow Z_{k+1} \xrightarrow{p_k^{k+1}} Z_k.$$

A priori unclear it stabilizes (addition of new equations and variables). An analog of the Hilbert basis theorem is needed.

But, infinite prolongations Z^∞ give \mathcal{D} -schemes $\text{Spec}_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, determined by \mathcal{D} -ideals \mathcal{I} e.g. $\mathcal{O}_{Z^\infty} = \mathcal{O}_{J_X^\infty E} / \mathcal{I}_{Z^\infty}$.

Stabilization (thus non-emptiness) is probed via Ritt's analog of Hilbert basis theorem for differential ideals (Ritt-Radenbush Theorem).

Infinite prolongations: a system of non-linear PDEs Z of k -th order is a family of sub-schemes $Z^\ell \subset J_X^\ell E$ for all $\ell \in \mathbb{N}$ where $\ell \geq k$. It is given as a tower of surjective submersions with inverse limit $Z^\infty = \varinjlim Z^\ell$.

Prolongation \Rightarrow tower of schemes:

$$\cdots \rightarrow Z_{k+\ell} \xrightarrow{p_{k+\ell-1}^{k+\ell}} Z_{k+\ell-1} \rightarrow \cdots \rightarrow Z_{k+1} \xrightarrow{p_k^{k+1}} Z_k.$$

A priori unclear it stabilizes (addition of new equations and variables). An analog of the Hilbert basis theorem is needed.

But, infinite prolongations Z^∞ give \mathcal{D} -schemes $\text{Spec}_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, determined by \mathcal{D} -ideals \mathcal{I} e.g. $\mathcal{O}_{Z^\infty} = \mathcal{O}_{J_X^\infty E} / \mathcal{I}_{Z^\infty}$.

Stabilization (thus non-emptiness) is probed via Ritt's analog of Hilbert basis theorem for differential ideals (Ritt-Radenbush Theorem).

Infinite prolongations: a system of non-linear PDEs Z of k -th order is a family of sub-schemes $Z^\ell \subset J_X^\ell E$ for all $\ell \in \mathbb{N}$ where $\ell \geq k$. It is given as a tower of surjective submersions with inverse limit $Z^\infty = \varinjlim Z^\ell$.

Prolongation \Rightarrow tower of schemes:

$$\cdots \rightarrow Z_{k+\ell} \xrightarrow{p_{k+\ell-1}^{k+\ell}} Z_{k+\ell-1} \rightarrow \cdots \rightarrow Z_{k+1} \xrightarrow{p_k^{k+1}} Z_k.$$

A priori unclear it stabilizes (addition of new equations and variables). An analog of the Hilbert basis theorem is needed.

But, infinite prolongations Z^∞ give \mathcal{D} -schemes $\text{Spec}_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, determined by \mathcal{D} -ideals \mathcal{I} e.g. $\mathcal{O}_{Z^\infty} = \mathcal{O}_{J_X^\infty E} / \mathcal{I}_{Z^\infty}$.

Stabilization (thus non-emptiness) is probed via Ritt's analog of Hilbert basis theorem for differential ideals (Ritt-Radenbush Theorem).

Infinite prolongations: a system of non-linear PDEs Z of k -th order is a family of sub-schemes $Z^\ell \subset J_X^\ell E$ for all $\ell \in \mathbb{N}$ where $\ell \geq k$. It is given as a tower of surjective submersions with inverse limit $Z^\infty = \varinjlim Z^\ell$.

Prolongation \Rightarrow tower of schemes:

$$\cdots \rightarrow Z_{k+\ell} \xrightarrow{p_{k+\ell-1}^{k+\ell}} Z_{k+\ell-1} \rightarrow \cdots \rightarrow Z_{k+1} \xrightarrow{p_k^{k+1}} Z_k.$$

A priori unclear it stabilizes (addition of new equations and variables). An analog of the Hilbert basis theorem is needed.

But, infinite prolongations Z^∞ give \mathcal{D} -schemes $\text{Spec}_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, determined by \mathcal{D} -ideals \mathcal{I} e.g. $\mathcal{O}_{Z^\infty} = \mathcal{O}_{J_X^\infty E} / \mathcal{I}_{Z^\infty}$.

Stabilization (thus non-emptiness) is probed via Ritt's analog of Hilbert basis theorem for differential ideals (Ritt-Radenbush Theorem).

Infinite prolongations: a system of non-linear PDEs Z of k -th order is a family of sub-schemes $Z^\ell \subset J_X^\ell E$ for all $\ell \in \mathbb{N}$ where $\ell \geq k$. It is given as a tower of surjective submersions with inverse limit $Z^\infty = \varinjlim Z^\ell$.

Prolongation \Rightarrow tower of schemes:

$$\cdots \rightarrow Z_{k+\ell} \xrightarrow{p_{k+\ell-1}^{k+\ell}} Z_{k+\ell-1} \rightarrow \cdots \rightarrow Z_{k+1} \xrightarrow{p_k^{k+1}} Z_k.$$

A priori unclear it stabilizes (addition of new equations and variables). An analog of the Hilbert basis theorem is needed.

But, infinite prolongations Z^∞ give \mathcal{D} -schemes $\text{Spec}_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$, determined by \mathcal{D} -ideals \mathcal{I} e.g. $\mathcal{O}_{Z^\infty} = \mathcal{O}_{J_X^\infty E} / \mathcal{I}_{Z^\infty}$.

Stabilization (thus non-emptiness) is probed via Ritt's analog of Hilbert basis theorem for differential ideals (Ritt-Radenbush Theorem).

Spencer (\mathcal{D} -) Regularity

We start with the differentially stable objects - it is convenient to single out those which arise from the Cartan-Kuranishi prolongation process.

Definition

Let \mathcal{I} be a \mathcal{D} -ideal with corresponding closed \mathcal{D} -subscheme $Z^\infty \subset J_X^\infty E$. It is *Spencer r -regular* if: (i) $Z_r, \text{pr}_1(Z_r)$ are (possibly singular) schemes and $\text{pr}_1(Z_r) \rightarrow Z_r$ is surjective, and (ii) for all $\ell \geq 0$ one has $Z_{\ell+r} = \text{pr}_\ell(Z_r)$. A \mathcal{D} -scheme is *Spencer regular* if it is Spencer r -regular for some $r \geq 0$.

Write $\text{Reg}_{\mathcal{D}}(Z) = r$.

* Pictorially:

$$Z \leftarrow Z^1 \leftarrow \cdots \leftarrow Z^{r_0} \leftarrow Z^{r_0+1} \leftarrow \cdots,$$

highlighting the *regular* region, defined by all $r \geq r_0$ such that $Z^{r+1} = \text{pr}_1(Z^r)$. Everywhere else, we ask that $Z_{r+1} \subseteq \text{pr}_1(Z_r)$, for all $r \geq k$.

Analytic category: There is a minimal r_0 such that (ii) holds for all $r \geq r_0$. (Cartan-Kuranishi Theorem)

Any algebraic analog of Spencer r -regularity?

We start with the differentially stable objects - it is convenient to single out those which arise from the Cartan-Kuranishi prolongation process.

Definition

Let \mathcal{I} be a \mathcal{D} -ideal with corresponding closed \mathcal{D} -subscheme $Z^\infty \subset J_X^\infty E$. It is *Spencer r -regular* if: (i) $Z_r, \text{pr}_1(Z_r)$ are (possibly singular) schemes and $\text{pr}_1(Z_r) \rightarrow Z_r$ is surjective, and (ii) for all $\ell \geq 0$ one has $Z_{\ell+r} = \text{pr}_\ell(Z_r)$. A \mathcal{D} -scheme is *Spencer regular* if it is Spencer r -regular for some $r \geq 0$.

Write $\text{Reg}_{\mathcal{D}}(Z) = r$.

* Pictorially:

$$Z \leftarrow Z^1 \leftarrow \cdots \leftarrow Z^{r_0} \leftarrow Z^{r_0+1} \leftarrow \cdots,$$

highlighting the *regular* region, defined by all $r \geq r_0$ such that $Z^{r+1} = \text{pr}_1(Z^r)$. Everywhere else, we ask that $Z_{r+1} \subseteq \text{pr}_1(Z_r)$, for all $r \geq k$.

Analytic category: There is a minimal r_0 such that (ii) holds for all $r \geq r_0$. (Cartan-Kuranishi Theorem)

Any algebraic analog of Spencer r -regularity?

We start with the differentially stable objects - it is convenient to single out those which arise from the Cartan-Kuranishi prolongation process.

Definition

Let \mathcal{I} be a \mathcal{D} -ideal with corresponding closed \mathcal{D} -subscheme $Z^\infty \subset J_X^\infty E$. It is *Spencer r -regular* if: (i) $Z_r, \text{pr}_1(Z_r)$ are (possibly singular) schemes and $\text{pr}_1(Z_r) \rightarrow Z_r$ is surjective, and (ii) for all $\ell \geq 0$ one has $Z_{\ell+r} = \text{pr}_\ell(Z_r)$. A \mathcal{D} -scheme is *Spencer regular* if it is Spencer r -regular for some $r \geq 0$.

Write $\text{Reg}_{\mathcal{D}}(Z) = r$.

* Pictorially:

$$Z \leftarrow Z^1 \leftarrow \cdots \leftarrow Z^{r_0} \leftarrow Z^{r_0+1} \leftarrow \cdots,$$

highlighting the *regular* region, defined by all $r \geq r_0$ such that $Z^{r+1} = \text{pr}_1(Z^r)$. Everywhere else, we ask that $Z_{r+1} \subseteq \text{pr}_1(Z_r)$, for all $r \geq k$.

Analytic category: There is a minimal r_0 such that (ii) holds for all $r \geq r_0$. (Cartan-Kuranishi Theorem)

Any algebraic analog of Spencer r -regularity?

We start with the differentially stable objects - it is convenient to single out those which arise from the Cartan-Kuranishi prolongation process.

Definition

Let \mathcal{I} be a \mathcal{D} -ideal with corresponding closed \mathcal{D} -subscheme $Z^\infty \subset J_X^\infty E$. It is *Spencer r -regular* if: (i) $Z_r, \text{pr}_1(Z_r)$ are (possibly singular) schemes and $\text{pr}_1(Z_r) \rightarrow Z_r$ is surjective, and (ii) for all $\ell \geq 0$ one has $Z_{\ell+r} = \text{pr}_\ell(Z_r)$. A \mathcal{D} -scheme is *Spencer regular* if it is Spencer r -regular for some $r \geq 0$.

Write $\text{Reg}_{\mathcal{D}}(Z) = r$.

* Pictorially:

$$Z \leftarrow Z^1 \leftarrow \cdots \leftarrow Z^{r_0} \leftarrow Z^{r_0+1} \leftarrow \cdots,$$

highlighting the *regular* region, defined by all $r \geq r_0$ such that $Z^{r+1} = \text{pr}_1(Z^r)$. Everywhere else, we ask that $Z_{r+1} \subseteq \text{pr}_1(Z_r)$, for all $r \geq k$.

Analytic category: There is a minimal r_0 such that (ii) holds for all $r \geq r_0$. (Cartan-Kuranishi Theorem)

Any algebraic analog of Spencer r -regularity?

Intuition from Algebraic Geometry

Equation ideal \mathcal{I} is stable under an action by \mathcal{D}_X (a **D-ideal**) and \mathcal{O}_{Z^∞} is an algebra (also stable by \mathcal{D}) e.g. $\mathcal{O}_{Z^\infty} \in \mathbf{CAlg}_X(\mathcal{D}_X)$.

- Grothendieck-style algebraic-geometry for PDEs - **Algebraic D-Geometry**:

$$0 \rightarrow \mathcal{I}_{Z^\infty} \rightarrow \mathcal{O}_{J_X^\infty E} \rightarrow \mathcal{O}_{Z^\infty} \rightarrow 0.$$

Concept	Algebraic Geometry	\mathcal{D} -Geometry
<i>Formula</i>	$P(x) = 0$	$F(x, u, \partial^\sigma u) = 0$
<i>Algebraic structure</i>	Commutative \mathbf{k} -algebra A	Commutative \mathcal{D} -algebra \mathcal{A}
<i>Free structure</i>	$P \in \mathbf{k}[x]$	$F \in \mathcal{A} := \mathcal{O}_{J_X^\infty E}$
<i>Solution space</i>	$\{x \in A \mid P(x) = 0\}$	$\{a \in \mathcal{A} \mid F(a) = 0\}$
<i>Affine object</i>	$\mathrm{Spec}_k(A)$	$\mathrm{Spec}_{\mathcal{D}}(\mathcal{A})$
<i>Representability</i>	$\mathrm{Sol}_k(P = 0) \simeq \mathrm{Spec}(A/P)$	$\mathrm{Sol}_{\mathcal{D}}(F = 0) \simeq \mathrm{Spec}_{\mathcal{D}}(\mathcal{O}_{J_X^\infty E}/\mathcal{I}_{Z^\infty})$

Question

Is there a moduli space of \mathcal{D} -subschemas?

Intuition from Algebraic Geometry

Equation ideal \mathcal{I} is stable under an action by \mathcal{D}_X (a **D-ideal**) and \mathcal{O}_{Z^∞} is an algebra (also stable by \mathcal{D}) e.g. $\mathcal{O}_{Z^\infty} \in \mathbf{CAlg}_X(\mathcal{D}_X)$.

- Grothendieck-style algebraic-geometry for PDEs - **Algebraic D-Geometry**:

$$0 \rightarrow \mathcal{I}_{Z^\infty} \rightarrow \mathcal{O}_{J_X^\infty E} \rightarrow \mathcal{O}_{Z^\infty} \rightarrow 0.$$

Concept	Algebraic Geometry	\mathcal{D} -Geometry
<i>Formula</i>	$P(x) = 0$	$F(x, u, \partial^\sigma u) = 0$
<i>Algebraic structure</i>	Commutative \mathbf{k} -algebra A	Commutative \mathcal{D} -algebra \mathcal{A}
<i>Free structure</i>	$P \in \mathbf{k}[x]$	$F \in \mathcal{A} := \mathcal{O}_{J_X^\infty E}$
<i>Solution space</i>	$\{x \in A \mid P(x) = 0\}$	$\{a \in \mathcal{A} \mid F(a) = 0\}$
<i>Affine object</i>	$\mathrm{Spec}_k(A)$	$\mathrm{Spec}_{\mathcal{D}}(\mathcal{A})$
<i>Representability</i>	$\mathrm{Sol}_k(P = 0) \simeq \mathrm{Spec}(A/P)$	$\mathrm{Sol}_{\mathcal{D}}(F = 0) \simeq \mathrm{Spec}_{\mathcal{D}}(\mathcal{O}_{J_X^\infty E}/\mathcal{I}_{Z^\infty})$

Question

Is there a moduli space of \mathcal{D} -subschemas?

Intuition from Algebraic Geometry

Equation ideal \mathcal{I} is stable under an action by \mathcal{D}_X (a **D-ideal**) and \mathcal{O}_{Z^∞} is an algebra (also stable by \mathcal{D}) e.g. $\mathcal{O}_{Z^\infty} \in \mathbf{CAlg}_X(\mathcal{D}_X)$.

- Grothendieck-style algebraic-geometry for PDEs - **Algebraic D-Geometry**:

$$0 \rightarrow \mathcal{I}_{Z^\infty} \rightarrow \mathcal{O}_{J_X^\infty E} \rightarrow \mathcal{O}_{Z^\infty} \rightarrow 0.$$

Concept	Algebraic Geometry	\mathcal{D} -Geometry
<i>Formula</i>	$P(x) = 0$	$F(x, u, \partial^\sigma u) = 0$
<i>Algebraic structure</i>	Commutative \mathbf{k} -algebra A	Commutative \mathcal{D} -algebra \mathcal{A}
<i>Free structure</i>	$P \in \mathbf{k}[x]$	$F \in \mathcal{A} := \mathcal{O}_{J_X^\infty E}$
<i>Solution space</i>	$\{x \in A \mid P(x) = 0\}$	$\{a \in \mathcal{A} \mid F(a) = 0\}$
<i>Affine object</i>	$\mathrm{Spec}_k(A)$	$\mathrm{Spec}_{\mathcal{D}}(\mathcal{A})$
<i>Representability</i>	$\mathrm{Sol}_k(P = 0) \simeq \mathrm{Spec}(A/P)$	$\mathrm{Sol}_{\mathcal{D}}(F = 0) \simeq \mathrm{Spec}_{\mathcal{D}}(\mathcal{O}_{J_X^\infty E}/\mathcal{I}_{Z^\infty})$

Question

Is there a moduli space of **\mathcal{D} -subschemas**?

Table of contents

1. Hilbert and Quot Schemes in Algebraic Geometry
2. Algebraic \mathcal{D} -Geometry of Non-linear PDEs
3. The \mathcal{D} -Hilbert Functor
4. Application of Spencer-stability to Non-abelian Hodge and DUY theorems
5. \mathcal{D} -Quot DG-Scheme

Hilbert and Quot Schemes in Algebraic Geometry

All schemes are locally Noetherian over an algebraically closed field k .

X/S is projective and $\mathcal{O}(1)$ a relatively ample line bundle. P is a fixed numerical polynomial.

Recall: Hilbert functor $\underline{\text{Hilb}}^P(X/S) : \text{Sch}_{/S}^{\text{op}} \rightarrow \text{Sets}$, associates to an S -scheme T , the set

$$\{Y_T \subset X \times_S T : \text{for } t \in T, Y_T|_t = Y \subset X, P(\mathcal{O}_Y) = P\}.$$

Theorem (Grothendieck)

The Hilbert functor is representable by a projective scheme.

Equiv. $\underline{\text{Quot}}_{X/S}(F)(T) := \{\text{coherent quotients } q : F_T \twoheadrightarrow G | G \text{ is } T\text{-flat}\}$.

1. $\underline{\text{Quot}}_{X/S}^P(F) \hookrightarrow \underline{\text{Quot}}_{X/S}(F)$, with $G \sim G'$ if $\ker(q) = \ker(q')$.
2. $\underline{\text{Quot}}_{X/S}^P(\mathcal{O}_X) = \underline{\text{Hilb}}_{X/S}^P(X)$.

Hilbert Scheme

All schemes are locally Noetherian over an algebraically closed field k .

X/S is projective and $\mathcal{O}(1)$ a relatively ample line bundle. P is a fixed numerical polynomial.

Recall: Hilbert functor $\underline{\text{Hilb}}^P(X/S) : \text{Sch}_{/S}^{\text{op}} \rightarrow \text{Sets}$, associates to an S -scheme T , the set

$$\{Y_T \subset X \times_S T : \text{for } t \in T, Y_T|_t = Y \subset X, P(\mathcal{O}_Y) = P\}.$$

Theorem (Grothendieck)

The Hilbert functor is representable by a projective scheme.

Equiv. $\underline{\text{Quot}}_{X/S}(F)(T) := \{\text{coherent quotients } q : F_T \twoheadrightarrow G | G \text{ is } T\text{-flat}\}$.

1. $\underline{\text{Quot}}_{X/S}^P(F) \hookrightarrow \underline{\text{Quot}}_{X/S}(F)$, with $G \sim G'$ if $\ker(q) = \ker(q')$.
2. $\underline{\text{Quot}}_{X/S}^P(\mathcal{O}_X) = \underline{\text{Hilb}}_{X/S}^P(X)$.

All schemes are locally Noetherian over an algebraically closed field k .

X/S is projective and $\mathcal{O}(1)$ a relatively ample line bundle. P is a fixed numerical polynomial.

Recall: Hilbert functor $\underline{\text{Hilb}}^P(X/S) : \text{Sch}_{/S}^{\text{op}} \rightarrow \text{Sets}$, associates to an S -scheme T , the set

$$\{Y_T \subset X \times_S T : \text{for } t \in T, Y_T|_t = Y \subset X, P(\mathcal{O}_Y) = P\}.$$

Theorem (Grothendieck)

The Hilbert functor is representable by a projective scheme.

Equiv. $\underline{\text{Quot}}_{X/S}(F)(T) := \{\text{coherent quotients } q : F_T \twoheadrightarrow G \mid G \text{ is } T\text{-flat}\}$.

1. $\underline{\text{Quot}}_{X/S}^P(F) \hookrightarrow \underline{\text{Quot}}_{X/S}(F)$, with $G \sim G'$ if $\ker(q) = \ker(q')$.
2. $\underline{\text{Quot}}_{X/S}^P(\mathcal{O}_X) = \underline{\text{Hilb}}_{X/S}^P(X)$.

All schemes are locally Noetherian over an algebraically closed field k .

X/S is projective and $\mathcal{O}(1)$ a relatively ample line bundle. P is a fixed numerical polynomial.

Recall: Hilbert functor $\underline{\text{Hilb}}^P(X/S) : \text{Sch}_{/S}^{\text{op}} \rightarrow \text{Sets}$, associates to an S -scheme T , the set

$$\{Y_T \subset X \times_S T : \text{for } t \in T, Y_T|_t = Y \subset X, P(\mathcal{O}_Y) = P\}.$$

Theorem (Grothendieck)

The Hilbert functor is representable by a projective scheme.

Equiv. $\underline{\text{Quot}}_{X/S}(F)(T) := \{\text{coherent quotients } q : F_T \twoheadrightarrow G | G \text{ is } T\text{-flat}\}$.

1. $\underline{\text{Quot}}_{X/S}^P(F) \hookrightarrow \underline{\text{Quot}}_{X/S}(F)$, with $G \sim G'$ if $\ker(q) = \ker(q')$.
2. $\underline{\text{Quot}}_{X/S}^P(\mathcal{O}_X) = \underline{\text{Hilb}}_{X/S}^P(X)$.

All schemes are locally Noetherian over an algebraically closed field k .

X/S is projective and $\mathcal{O}(1)$ a relatively ample line bundle. P is a fixed numerical polynomial.

Recall: Hilbert functor $\underline{\text{Hilb}}^P(X/S) : \text{Sch}_{/S}^{\text{op}} \rightarrow \text{Sets}$, associates to an S -scheme T , the set

$$\{Y_T \subset X \times_S T : \text{for } t \in T, Y_T|_t = Y \subset X, P(\mathcal{O}_Y) = P\}.$$

Theorem (Grothendieck)

The Hilbert functor is representable by a projective scheme.

Equiv. $\underline{\text{Quot}}_{X/S}(F)(T) := \{\text{coherent quotients } q : F_T \twoheadrightarrow G \mid G \text{ is } T\text{-flat}\}$.

1. $\underline{\text{Quot}}_{X/S}^P(F) \hookrightarrow \underline{\text{Quot}}_{X/S}(F)$, with $G \sim G'$ if $\ker(q) = \ker(q')$.
2. $\underline{\text{Quot}}_{X/S}^P(\mathcal{O}_X) = \underline{\text{Hilb}}_{X/S}^P(X)$.

Fixing P induces a **regularity** condition on the quotient sheaf G .

Fact: By restricting to structure sheaves of subschemes with a fixed P , we can find an integer m depending only on P that works simultaneously for the structure sheaf of *every* subscheme with Hilbert polynomial equal to P (**uniform bound**).

Definition

A coherent sheaf $F \in \mathit{Coh}(X)$ is *Castelnuovo-Mumford m -regular* if $H^i(X, F(m-i)) = 0, i > 0$.

This leads to an embedding of the Quot scheme into a suitable Grassmann variety.

There is a more general notion of Castelnuovo-Mumford regularity, with a purely commutative algebraic description.

Fixing P induces a **regularity** condition on the quotient sheaf G .

Fact: By restricting to structure sheaves of subschemes with a fixed P , we can find an integer m depending only on P that works simultaneously for the structure sheaf of *every* subscheme with Hilbert polynomial equal to P (**uniform bound**).

Definition

A coherent sheaf $F \in \mathit{Coh}(X)$ is *Castelnuovo-Mumford m -regular* if $H^i(X, F(m-i)) = 0, i > 0$.

This leads to an embedding of the Quot scheme into a suitable Grassmann variety.

There is a more general notion of Castelnuovo-Mumford regularity, with a purely commutative algebraic description.

Fixing P induces a **regularity** condition on the quotient sheaf G .

Fact: By restricting to structure sheaves of subschemes with a fixed P , we can find an integer m depending only on P that works simultaneously for the structure sheaf of *every* subscheme with Hilbert polynomial equal to P (**uniform bound**).

Definition

A coherent sheaf $F \in \mathit{Coh}(X)$ is *Castelnuovo-Mumford m -regular* if $H^i(X, F(m - i)) = 0, i > 0$.

This leads to an embedding of the Quot scheme into a suitable Grassmann variety.

There is a more general notion of Castelnuovo-Mumford regularity, with a purely commutative algebraic description.

Fixing P induces a **regularity** condition on the quotient sheaf G .

Fact: By restricting to structure sheaves of subschemes with a fixed P , we can find an integer m depending only on P that works simultaneously for the structure sheaf of *every* subscheme with Hilbert polynomial equal to P (**uniform bound**).

Definition

A coherent sheaf $F \in \mathit{Coh}(X)$ is *Castelnuovo-Mumford m -regular* if $H^i(X, F(m-i)) = 0, i > 0$.

This leads to an embedding of the Quot scheme into a suitable Grassmann variety.

There is a more general notion of Castelnuovo-Mumford regularity, with a purely commutative algebraic description.

Fixing P induces a **regularity** condition on the quotient sheaf G .

Fact: By restricting to structure sheaves of subschemes with a fixed P , we can find an integer m depending only on P that works simultaneously for the structure sheaf of *every* subscheme with Hilbert polynomial equal to P (**uniform bound**).

Definition

A coherent sheaf $F \in \mathit{Coh}(X)$ is *Castelnuovo-Mumford m -regular* if $H^i(X, F(m - i)) = 0, i > 0$.

This leads to an embedding of the Quot scheme into a suitable Grassmann variety.

There is a more general notion of Castelnuovo-Mumford regularity, with a purely commutative algebraic description.

Algebraic regularity: Koszul complex

Let V be an n -dimensional k -vector space.

- Koszul (degree k), $K_k(V)$:

$$0 \rightarrow S^{k-n}V \otimes \wedge^n V \xrightarrow{\partial} S^{k-n+1}V \otimes \wedge^{n-1}V \rightarrow \cdots \rightarrow S^k V \rightarrow 0,$$

$$\partial(w \otimes v_1 \wedge \dots \wedge v_q) = \sum_{i=1}^q (-1)^{i+1} v_i \cdot w \otimes v_1 \wedge \dots \wedge \hat{v}_i \wedge \dots \wedge v_q.$$

- Polynomial de Rham (degree k) $\mathcal{R}_k(V)$:

$$0 \rightarrow S^k V \xrightarrow{\delta} S^{k-1} V \otimes V \xrightarrow{\delta} S^{k-2} V \otimes \wedge^2 V \rightarrow \cdots \rightarrow S^{k-n} V \otimes \wedge^n V \rightarrow 0$$

$$\delta(w_1 \cdots w_p \otimes v) = \sum_{i=1}^p w_1 \cdots w_{i-1} w_i \cdots w_p \otimes w_i \wedge v.$$

Remark. $\partial^2 = 0, \delta^2 = 0$, and $\mathcal{R}_\bullet(V)^\vee \simeq K_\bullet(V^\vee)$.

Algebraic regularity: Koszul complex

Let V be an n -dimensional k -vector space.

- **Koszul (degree k), $K_k(V)$:**

$$0 \rightarrow S^{k-n}V \otimes \wedge^n V \xrightarrow{\partial} S^{k-n+1}V \otimes \wedge^{n-1}V \rightarrow \cdots \rightarrow S^k V \rightarrow 0,$$

$$\partial(w \otimes v_1 \wedge \dots \wedge v_q) = \sum_{i=1}^q (-1)^{i+1} v_i \cdot w \otimes v_1 \wedge \dots \wedge \hat{v}_i \wedge \dots \wedge v_q.$$

- **Polynomial de Rham (degree k) $\mathcal{R}_k(V)$:**

$$0 \rightarrow S^k V \xrightarrow{\delta} S^{k-1} V \otimes V \xrightarrow{\delta} S^{k-2} V \otimes \wedge^2 V \rightarrow \cdots \rightarrow S^{k-n} V \otimes \wedge^n V \rightarrow 0$$

$$\delta(w_1 \cdots w_p \otimes v) = \sum_{i=1}^p w_1 \cdots w_{i-1} w_i \cdots w_p \otimes w_i \wedge v.$$

Remark. $\partial^2 = 0, \delta^2 = 0$, and $\mathcal{R}_\bullet(V)^\vee \simeq K_\bullet(V^\vee)$.

Algebraic regularity: Koszul complex

Let V be an n -dimensional k -vector space.

- Koszul (degree k), $K_k(V)$:

$$0 \rightarrow S^{k-n}V \otimes \wedge^n V \xrightarrow{\partial} S^{k-n+1}V \otimes \wedge^{n-1}V \rightarrow \cdots \rightarrow S^k V \rightarrow 0,$$

$$\partial(w \otimes v_1 \wedge \dots \wedge v_q) = \sum_{i=1}^q (-1)^{i+1} v_i \cdot w \otimes v_1 \wedge \dots \wedge \hat{v}_i \wedge \dots \wedge v_q.$$

- Polynomial de Rham (degree k) $\mathcal{R}_k(V)$:

$$0 \rightarrow S^k V \xrightarrow{\delta} S^{k-1} V \otimes V \xrightarrow{\delta} S^{k-2} V \otimes \wedge^2 V \rightarrow \cdots \rightarrow S^{k-n} V \otimes \wedge^n V \rightarrow 0$$

$$\delta(w_1 \cdots w_p \otimes v) = \sum_{i=1}^p w_1 \cdots w_{i-1} w_i \cdots w_p \otimes w_i \wedge v.$$

Remark. $\partial^2 = 0, \delta^2 = 0$, and $\mathcal{R}_\bullet(V)^\vee \simeq K_\bullet(V^\vee)$.

Algebraic regularity: Koszul complex

Let V be an n -dimensional k -vector space.

- Koszul (degree k), $K_k(V)$:

$$0 \rightarrow S^{k-n}V \otimes \wedge^n V \xrightarrow{\partial} S^{k-n+1}V \otimes \wedge^{n-1}V \rightarrow \cdots \rightarrow S^k V \rightarrow 0,$$

$$\partial(w \otimes v_1 \wedge \dots \wedge v_q) = \sum_{i=1}^q (-1)^{i+1} v_i \cdot w \otimes v_1 \wedge \dots \wedge \hat{v}_i \wedge \dots \wedge v_q.$$

- Polynomial de Rham (degree k) $\mathcal{R}_k(V)$:

$$0 \rightarrow S^k V \xrightarrow{\delta} S^{k-1} V \otimes V \xrightarrow{\delta} S^{k-2} V \otimes \wedge^2 V \rightarrow \cdots \rightarrow S^{k-n} V \otimes \wedge^n V \rightarrow 0$$

$$\delta(w_1 \cdots w_p \otimes v) = \sum_{i=1}^p w_1 \cdots w_{i-1} w_i \cdots w_p \otimes w_i \wedge v.$$

Remark. $\partial^2 = 0, \delta^2 = 0$, and $\mathcal{R}_\bullet(V)^\vee \simeq K_\bullet(V^\vee)$.

For a module M , over a polynomial ring, tensoring the Koszul sequence gives $K_\bullet(M) \simeq K_\bullet(V) \otimes M$.

If M is additionally *graded*, the Koszul complex is *bi-graded*:

$$H_{p,q}(K_\bullet(M)) := H\left(\wedge^{p+1} V \otimes M_{q-1} \rightarrow \wedge^p V \otimes M_q \rightarrow \wedge^{p-1} V \otimes M_{q+1}\right).$$

The notion of regularity uses these spaces: M is *r-regular* if:
 $H_{p,q}(K_\bullet(M)) = 0, \forall p, q \geq r$.

Definition

The *regularity* of M is $\text{reg}_{CM}(M) := \inf_r \{H_{p,q}(K_\bullet(M)) = 0, \forall p, q \geq r\}$.

For a module M , over a polynomial ring, tensoring the Koszul sequence gives $K_\bullet(M) \simeq K_\bullet(V) \otimes M$.

If M is additionally **graded**, the Koszul complex is *bi-graded*:

$$H_{p,q}(K_\bullet(M)) := H\left(\wedge^{p+1} V \otimes M_{q-1} \rightarrow \wedge^p V \otimes M_q \rightarrow \wedge^{p-1} V \otimes M_{q+1}\right).$$

The notion of regularity uses these spaces: M is *r-regular* if:
 $H_{p,q}(K_\bullet(M)) = 0, \forall p, q \geq r$.

Definition

The *regularity* of M is $\text{reg}_{CM}(M) := \inf_r \{H_{p,q}(K_\bullet(M)) = 0, \forall p, q \geq r\}$.

For a module M , over a polynomial ring, tensoring the Koszul sequence gives $K_\bullet(M) \simeq K_\bullet(V) \otimes M$.

If M is additionally **graded**, the Koszul complex is *bi-graded*:

$$H_{p,q}(K_\bullet(M)) := H\left(\wedge^{p+1} V \otimes M_{q-1} \rightarrow \wedge^p V \otimes M_q \rightarrow \wedge^{p-1} V \otimes M_{q+1}\right).$$

The notion of regularity uses these spaces: M is *r-regular* if:
 $H_{p,q}(K_\bullet(M)) = 0, \forall p, q \geq r$.

Definition

The *regularity* of M is $\text{reg}_{CM}(M) := \inf_r \{H_{p,q}(K_\bullet(M)) = 0, \forall p, q \geq r\}$.

For a module M , over a polynomial ring, tensoring the Koszul sequence gives $K_\bullet(M) \simeq K_\bullet(V) \otimes M$.

If M is additionally **graded**, the Koszul complex is *bi-graded*:

$$H_{p,q}(K_\bullet(M)) := H\left(\wedge^{p+1} V \otimes M_{q-1} \rightarrow \wedge^p V \otimes M_q \rightarrow \wedge^{p-1} V \otimes M_{q+1}\right).$$

The notion of regularity uses these spaces: M is *r-regular* if:
 $H_{p,q}(K_\bullet(M)) = 0, \forall p, q \geq r$.

Definition

The **regularity** of M is $\text{reg}_{CM}(M) := \inf_r \{H_{p,q}(K_\bullet(M)) = 0, \forall p, q \geq r\}$.

Algebraic \mathcal{D} -Geometry of Non-linear PDEs

The ‘Guiding Idea’

Geometric theory of PDEs is similar to ordinary algebraic geometry.

Algebraic Geometry: $P_1(x_1, \dots, x_N) = 0, \dots, P_N(x_1, \dots, x_n) = 0 \Rightarrow$ a geometric object i.e. *schemes over k -algebras*:

$$\text{Sch}_k \subset \text{Fun}(\text{CALG}_k^{\text{op}}, \text{SETS}) \rightsquigarrow S : \begin{cases} P_1(x_1, \dots, x_n) = 0 \\ \vdots \\ P_N(x_1, \dots, x_n) = 0 \end{cases} .$$

e.g. $\text{Hilb}_X^P, \text{Quot}_X^P$

\mathcal{D} -Geometry: $F_1(x, \dots, u_{[\sigma]}, \dots) = 0, \dots, F_N(x, \dots, u_{[\sigma]}, \dots) = 0 \Rightarrow$ a geometric object i.e. *schemes over \mathcal{D} -algebras*:

$$\text{Sch}_X(\mathcal{D}) \subset \text{Fun}(\text{CALG}_X(\mathcal{D}_X)^{\text{op}}, \text{SETS}) \rightsquigarrow S : \begin{cases} F_1(x, [u]) = 0 \\ \vdots \\ F_N(x, [u]) = 0 \end{cases} .$$

? $\text{Hilb}_{\mathcal{D}_X}^P, \text{Quot}_{\mathcal{D}_X}^P$?

The ‘Guiding Idea’

Geometric theory of PDEs is similar to ordinary algebraic geometry.

Algebraic Geometry: $P_1(x_1, \dots, x_N) = 0, \dots, P_N(x_1, \dots, x_n) = 0 \Rightarrow$ a geometric object i.e. *schemes over k -algebras*:

$$\text{Sch}_k \subset \text{Fun}(\text{CALG}_k^{\text{op}}, \text{SETS}) \rightsquigarrow S : \begin{cases} P_1(x_1, \dots, x_n) = 0 \\ \vdots \\ P_N(x_1, \dots, x_n) = 0 \end{cases} .$$

e.g. $\text{Hilb}_X^P, \text{Quot}_X^P$

\mathcal{D} -Geometry: $F_1(x, \dots, u_{[\sigma]}, \dots) = 0, \dots, F_N(x, \dots, u_{[\sigma]}, \dots) = 0 \Rightarrow$ a geometric object i.e. *schemes over \mathcal{D} -algebras*:

$$\text{Sch}_X(\mathcal{D}) \subset \text{Fun}(\text{CALG}_X(\mathcal{D}_X)^{\text{op}}, \text{SETS}) \rightsquigarrow S : \begin{cases} F_1(x, [u]) = 0 \\ \vdots \\ F_N(x, [u]) = 0 \end{cases} .$$

? $\text{Hilb}_{\mathcal{D}_X}^P, \text{Quot}_{\mathcal{D}_X}^P$?

The ‘Guiding Idea’

Geometric theory of PDEs is similar to ordinary algebraic geometry.

Algebraic Geometry: $P_1(x_1, \dots, x_N) = 0, \dots, P_N(x_1, \dots, x_n) = 0 \Rightarrow$ a geometric object i.e. *schemes over k -algebras*:

$$\text{Sch}_k \subset \text{Fun}(\text{CALG}_k^{\text{op}}, \text{SETS}) \rightsquigarrow S : \begin{cases} P_1(x_1, \dots, x_n) = 0 \\ \vdots \\ P_N(x_1, \dots, x_n) = 0 \end{cases} .$$

e.g. $\text{Hilb}_X^P, \text{Quot}_X^P$

\mathcal{D} -Geometry: $F_1(x, \dots, u_{[\sigma]}, \dots) = 0, \dots, F_N(x, \dots, u_{[\sigma]}, \dots) = 0 \Rightarrow$ a geometric object i.e. *schemes over \mathcal{D} -algebras*:

$$\text{Sch}_X(\mathcal{D}) \subset \text{Fun}(\text{CALG}_X(\mathcal{D}_X)^{\text{op}}, \text{SETS}) \rightsquigarrow S : \begin{cases} F_1(x, [u]) = 0 \\ \vdots \\ F_N(x, [u]) = 0 \end{cases} .$$

? $\text{Hilb}_{\mathcal{D}_X}^P, \text{Quot}_{\mathcal{D}_X}^P$?

Basic idea

Define a *set*,

$$\begin{array}{ccc}
 \mathcal{I}_{Z^\infty} & \longrightarrow & \mathcal{O}_{J_X^\infty E} \xrightarrow{q} \mathcal{O}_{Z^\infty} \\
 \downarrow \alpha & & \downarrow \\
 \mathcal{I}_{Z'_\infty} & \longrightarrow & \mathcal{O}_{J_X^\infty E} \xrightarrow{q'} \mathcal{O}_{Z'_\infty},
 \end{array}$$

$[\mathcal{I}_X] \in \mathcal{Q}_{\mathcal{D}_X}(n, m, N, k) \sim$

where α, β are isomorphisms of \mathcal{D}_X -algebras.

Impose that the system $\{F_A = 0 : A = 1, \dots, N\}$, or equivalently the ideal \mathcal{I}_{Z^∞} satisfies

$$\underbrace{\text{Sol}_{\mathcal{D}}(\mathcal{I}_{Z^\infty}) \neq \text{Spec}_{\mathcal{D}}(\mathcal{O}_{J_X^\infty E})}_{\text{Non-trivial}}, \quad \text{and} \quad \underbrace{\text{Sol}_{\mathcal{D}}(\mathcal{I}_{Z^\infty}) \neq \emptyset}_{\text{Consistent}}. \quad (8)$$

Formal integrability is assumed - the ideals contain all possible integrability conditions.

Our original question

Question

Is the space $\mathcal{Q}_{\mathcal{D}_X}$ of \mathcal{D} -ideal sheaves representable?

What do we need?

- Identify **numerical** characterizations to parameterize our objects;
- Obtain ‘regularity’ compatible with cohomological vanishing
- Show uniform boundedness in flat families

Question

Is there a **derived enhancement** $\mathbb{R}\mathcal{Q}_{\mathcal{D}_X}$?

Algebraic \mathcal{D} -Geometry \sim Derived \mathcal{D} -Geometry

$\text{Sch}_X(\mathcal{D}_X) \subset \text{Fun}(\text{CAlg}_X(\mathcal{D}_X)^{op}, \text{SETS}) \sim \text{dStk}_X(\mathcal{D}_X) \subset \text{dPStk}_X(\mathcal{D}_X)$.

Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic description.

Let V, W be finite-dimensional vector spaces, $\dim V = n$.

Consider $\text{Sym}^k(V^\vee) \otimes W, k \geq 0$.

Let $\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W$ be a vector subspace.

First-prolongation is $\text{pr}_1(\mathcal{N}_k) := \{\mathcal{P} \in \text{Sym}^{k+1}(V^\vee) \otimes W \mid \delta(\mathcal{P}) \in \mathcal{N}_k \otimes V^\vee\}$.

* Alternatively, $\text{pr}_1(\mathcal{N}_k) := (V \otimes \mathcal{N}_k) \cap (\text{Sym}^{k+1}(V^\vee) \otimes W)$, taken in $V^\vee \otimes (\text{Sym}^q(V^\vee) \otimes W)$.

Definition

A sequence of vector sub-spaces $\{\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W\}_{k \in \mathbb{Z}_+}$ is a **symbolic system** if $\mathcal{N}_{k+1} \subseteq \text{pr}_1(\mathcal{N}_k), k \in \mathbb{Z}_+$.

Remark: $\text{pr}_{r+1}(\mathcal{N}_k) := \text{pr}_1(\text{pr}_r(\mathcal{N}_k)), r \in \mathbb{N}$ or
 $\text{pr}_r(\mathcal{N}_k) = (\otimes_{i=1}^r V^\vee \otimes \mathcal{N}_k) \cap (\text{Sym}^{q+r}(V^\vee) \otimes E)$.

We can construct a graded module

$$\mathcal{M}_\bullet := \bigoplus_k \mathcal{N}_k \Rightarrow K_\bullet(\mathcal{M}_\bullet) \Rightarrow H_{p,q}(K_\bullet(\mathcal{M}_\bullet)).$$

Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic description.

Let V, W be finite-dimensional vector spaces, $\dim V = n$.

Consider $\text{Sym}^k(V^\vee) \otimes W, k \geq 0$.

Let $\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W$ be a vector subspace.

First-prolongation is $\text{pr}_1(\mathcal{N}_k) := \{\mathcal{P} \in \text{Sym}^{k+1}(V^\vee) \otimes W \mid \delta(\mathcal{P}) \in \mathcal{N}_k \otimes V^\vee\}$.

* Alternatively, $\text{pr}_1(\mathcal{N}_k) := (V \otimes \mathcal{N}_k) \cap (\text{Sym}^{k+1}(V^\vee) \otimes W)$, taken in $V^\vee \otimes (\text{Sym}^q(V^\vee) \otimes W)$.

Definition

A sequence of vector sub-spaces $\{\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W\}_{k \in \mathbb{Z}_+}$ is a **symbolic system** if $\mathcal{N}_{k+1} \subseteq \text{pr}_1(\mathcal{N}_k), k \in \mathbb{Z}_+$.

Remark: $\text{pr}_{r+1}(\mathcal{N}_k) := \text{pr}_1(\text{pr}_r(\mathcal{N}_k)), r \in \mathbb{N}$ or
 $\text{pr}_r(\mathcal{N}_k) = (\otimes_{i=1}^r V^\vee \otimes \mathcal{N}_k) \cap (\text{Sym}^{q+r}(V^\vee) \otimes E)$.

We can construct a graded module

$$\mathcal{M}_\bullet := \bigoplus_k \mathcal{N}_k \Rightarrow K_\bullet(\mathcal{M}_\bullet) \Rightarrow H_{p,q}(K_\bullet(\mathcal{M}_\bullet)).$$

Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic description.

Let V, W be finite-dimensional vector spaces, $\dim V = n$.

Consider $\text{Sym}^k(V^\vee) \otimes W, k \geq 0$.

Let $\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W$ be a vector subspace.

First-prolongation is $\text{pr}_1(\mathcal{N}_k) := \{\mathcal{P} \in \text{Sym}^{k+1}(V^\vee) \otimes W \mid \delta(\mathcal{P}) \in \mathcal{N}_k \otimes V^\vee\}$.

* Alternatively, $\text{pr}_1(\mathcal{N}_k) := (V \otimes \mathcal{N}_k) \cap (\text{Sym}^{k+1}(V^\vee) \otimes W)$, taken in $V^\vee \otimes (\text{Sym}^q(V^\vee) \otimes W)$.

Definition

A sequence of vector sub-spaces $\{\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W\}_{k \in \mathbb{Z}_+}$ is a **symbolic system** if $\mathcal{N}_{k+1} \subseteq \text{pr}_1(\mathcal{N}_k), k \in \mathbb{Z}_+$.

Remark: $\text{pr}_{r+1}(\mathcal{N}_k) := \text{pr}_1(\text{pr}_r(\mathcal{N}_k)), r \in \mathbb{N}$ or
 $\text{pr}_r(\mathcal{N}_k) = (\otimes_{i=1}^r V^\vee \otimes \mathcal{N}_k) \cap (\text{Sym}^{q+r}(V^\vee) \otimes E)$.

We can construct a graded module

$$\mathcal{M}_\bullet := \bigoplus_k \mathcal{N}_k \Rightarrow K_\bullet(\mathcal{M}_\bullet) \Rightarrow H_{p,q}(K_\bullet(\mathcal{M}_\bullet)).$$

Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic description.

Let V, W be finite-dimensional vector spaces, $\dim V = n$.

Consider $\text{Sym}^k(V^\vee) \otimes W, k \geq 0$.

Let $\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W$ be a vector subspace.

First-prolongation is $\text{pr}_1(\mathcal{N}_k) := \{\mathcal{P} \in \text{Sym}^{k+1}(V^\vee) \otimes W \mid \delta(\mathcal{P}) \in \mathcal{N}_k \otimes V^\vee\}$.

* Alternatively, $\text{pr}_1(\mathcal{N}_k) := (V \otimes \mathcal{N}_k) \cap (\text{Sym}^{k+1}(V^\vee) \otimes W)$, taken in $V^\vee \otimes (\text{Sym}^q(V^\vee) \otimes W)$.

Definition

A sequence of vector sub-spaces $\{\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W\}_{k \in \mathbb{Z}_+}$ is a **symbolic system** if $\mathcal{N}_{k+1} \subseteq \text{pr}_1(\mathcal{N}_k), k \in \mathbb{Z}_+$.

Remark: $\text{pr}_{r+1}(\mathcal{N}_k) := \text{pr}_1(\text{pr}_r(\mathcal{N}_k)), r \in \mathbb{N}$ or
 $\text{pr}_r(\mathcal{N}_k) = (\otimes_{i=1}^r V^\vee \otimes \mathcal{N}_k) \cap (\text{Sym}^{q+r}(V^\vee) \otimes E)$.

We can construct a graded module

$$\mathcal{M}_\bullet := \bigoplus_k \mathcal{N}_k \Rightarrow K_\bullet(\mathcal{M}_\bullet) \Rightarrow H_{p,q}(K_\bullet(\mathcal{M}_\bullet)).$$

Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic description.

Let V, W be finite-dimensional vector spaces, $\dim V = n$.

Consider $\text{Sym}^k(V^\vee) \otimes W, k \geq 0$.

Let $\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W$ be a vector subspace.

First-prolongation is $\text{pr}_1(\mathcal{N}_k) := \{\mathcal{P} \in \text{Sym}^{k+1}(V^\vee) \otimes W \mid \delta(\mathcal{P}) \in \mathcal{N}_k \otimes V^\vee\}$.

* Alternatively, $\text{pr}_1(\mathcal{N}_k) := (V \otimes \mathcal{N}_k) \cap (\text{Sym}^{k+1}(V^\vee) \otimes W)$, taken in $V^\vee \otimes (\text{Sym}^q(V^\vee) \otimes W)$.

Definition

A sequence of vector sub-spaces $\{\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W\}_{k \in \mathbb{Z}_+}$ is a **symbolic system** if $\mathcal{N}_{k+1} \subseteq \text{pr}_1(\mathcal{N}_k), k \in \mathbb{Z}_+$.

Remark: $\text{pr}_{r+1}(\mathcal{N}_k) := \text{pr}_1(\text{pr}_r(\mathcal{N}_k)), r \in \mathbb{N}$ or
 $\text{pr}_r(\mathcal{N}_k) = (\otimes_{i=1}^r V^\vee \otimes \mathcal{N}_k) \cap (\text{Sym}^{q+r}(V^\vee) \otimes E)$.

We can construct a graded module

$$\mathcal{M}_\bullet := \bigoplus_k \mathcal{N}_k \Rightarrow K_\bullet(\mathcal{M}_\bullet) \Rightarrow H_{p,q}(K_\bullet(\mathcal{M}_\bullet)).$$

Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic description.

Let V, W be finite-dimensional vector spaces, $\dim V = n$.

Consider $\text{Sym}^k(V^\vee) \otimes W, k \geq 0$.

Let $\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W$ be a vector subspace.

First-prolongation is $\text{pr}_1(\mathcal{N}_k) := \{\mathcal{P} \in \text{Sym}^{k+1}(V^\vee) \otimes W \mid \delta(\mathcal{P}) \in \mathcal{N}_k \otimes V^\vee\}$.

* Alternatively, $\text{pr}_1(\mathcal{N}_k) := (V \otimes \mathcal{N}_k) \cap (\text{Sym}^{k+1}(V^\vee) \otimes W)$, taken in $V^\vee \otimes (\text{Sym}^q(V^\vee) \otimes W)$.

Definition

A sequence of vector sub-spaces $\{\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W\}_{k \in \mathbb{Z}_+}$ is a **symbolic system** if $\mathcal{N}_{k+1} \subseteq \text{pr}_1(\mathcal{N}_k), k \in \mathbb{Z}_+$.

Remark: $\text{pr}_{r+1}(\mathcal{N}_k) := \text{pr}_1(\text{pr}_r(\mathcal{N}_k)), r \in \mathbb{N}$ or
 $\text{pr}_r(\mathcal{N}_k) = (\otimes_{i=1}^r V^\vee \otimes \mathcal{N}_k) \cap (\text{Sym}^{q+r}(V^\vee) \otimes E)$.

We can construct a graded module

$$\mathcal{M}_\bullet := \bigoplus_k \mathcal{N}_k \Rightarrow K_\bullet(\mathcal{M}_\bullet) \Rightarrow H_{p,q}(K_\bullet(\mathcal{M}_\bullet)).$$

Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic description.

Let V, W be finite-dimensional vector spaces, $\dim V = n$.

Consider $Sym^k(V^\vee) \otimes W, k \geq 0$.

Let $\mathcal{N}_k \subseteq Sym^k(V^\vee) \otimes W$ be a vector subspace.

First-prolongation is $\text{pr}_1(\mathcal{N}_k) := \{\mathcal{P} \in Sym^{k+1}(V^\vee) \otimes W \mid \delta(\mathcal{P}) \in \mathcal{N}_k \otimes V^\vee\}$.

* Alternatively, $\text{pr}_1(\mathcal{N}_k) := (V \otimes \mathcal{N}_k) \cap (Sym^{k+1}(V^\vee) \otimes W)$, taken in $V^\vee \otimes (Sym^q(V^\vee) \otimes W)$.

Definition

A sequence of vector sub-spaces $\{\mathcal{N}_k \subseteq Sym^k(V^\vee) \otimes W\}_{k \in \mathbb{Z}_+}$ is a **symbolic system** if $\mathcal{N}_{k+1} \subseteq \text{pr}_1(\mathcal{N}_k), k \in \mathbb{Z}_+$.

Remark: $\text{pr}_{r+1}(\mathcal{N}_k) := \text{pr}_1(\text{pr}_r(\mathcal{N}_k)), r \in \mathbb{N}$ or
 $\text{pr}_r(\mathcal{N}_k) = (\otimes_{i=1}^r V^\vee \otimes \mathcal{N}_k) \cap (Sym^{q+r}(V^\vee) \otimes E)$.

We can construct a graded module

$$\mathcal{M}_\bullet := \bigoplus_k \mathcal{N}_k \Rightarrow K_\bullet(\mathcal{M}_\bullet) \Rightarrow H_{p,q}(K_\bullet(\mathcal{M}_\bullet)).$$

Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic description.

Let V, W be finite-dimensional vector spaces, $\dim V = n$.

Consider $\text{Sym}^k(V^\vee) \otimes W, k \geq 0$.

Let $\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W$ be a vector subspace.

First-prolongation is $\text{pr}_1(\mathcal{N}_k) := \{\mathcal{P} \in \text{Sym}^{k+1}(V^\vee) \otimes W \mid \delta(\mathcal{P}) \in \mathcal{N}_k \otimes V^\vee\}$.

* Alternatively, $\text{pr}_1(\mathcal{N}_k) := (V \otimes \mathcal{N}_k) \cap (\text{Sym}^{k+1}(V^\vee) \otimes W)$, taken in $V^\vee \otimes (\text{Sym}^q(V^\vee) \otimes W)$.

Definition

A sequence of vector sub-spaces $\{\mathcal{N}_k \subseteq \text{Sym}^k(V^\vee) \otimes W\}_{k \in \mathbb{Z}_+}$ is a **symbolic system** if $\mathcal{N}_{k+1} \subseteq \text{pr}_1(\mathcal{N}_k), k \in \mathbb{Z}_+$.

Remark: $\text{pr}_{r+1}(\mathcal{N}_k) := \text{pr}_1(\text{pr}_r(\mathcal{N}_k)), r \in \mathbb{N}$ or
 $\text{pr}_r(\mathcal{N}_k) = (\otimes_{i=1}^r V^\vee \otimes \mathcal{N}_k) \cap (\text{Sym}^{q+r}(V^\vee) \otimes E)$.

We can construct a graded module

$$\mathcal{M}_\bullet := \bigoplus_k \mathcal{N}_k \Rightarrow K_\bullet(\mathcal{M}_\bullet) \Rightarrow H_{p,q}(K_\bullet(\mathcal{M}_\bullet)).$$

Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic description.

Let V, W be finite-dimensional vector spaces, $\dim V = n$.

Consider $Sym^k(V^\vee) \otimes W, k \geq 0$.

Let $\mathcal{N}_k \subseteq Sym^k(V^\vee) \otimes W$ be a vector subspace.

First-prolongation is $\text{pr}_1(\mathcal{N}_k) := \{\mathcal{P} \in Sym^{k+1}(V^\vee) \otimes W \mid \delta(\mathcal{P}) \in \mathcal{N}_k \otimes V^\vee\}$.

* Alternatively, $\text{pr}_1(\mathcal{N}_k) := (V \otimes \mathcal{N}_k) \cap (Sym^{k+1}(V^\vee) \otimes W)$, taken in $V^\vee \otimes (Sym^q(V^\vee) \otimes W)$.

Definition

A sequence of vector sub-spaces $\{\mathcal{N}_k \subseteq Sym^k(V^\vee) \otimes W\}_{k \in \mathbb{Z}_+}$ is a **symbolic system** if $\mathcal{N}_{k+1} \subseteq \text{pr}_1(\mathcal{N}_k), k \in \mathbb{Z}_+$.

Remark: $\text{pr}_{r+1}(\mathcal{N}_k) := \text{pr}_1(\text{pr}_r(\mathcal{N}_k)), r \in \mathbb{N}$ or
 $\text{pr}_r(\mathcal{N}_k) = (\otimes_{i=1}^r V^\vee \otimes \mathcal{N}_k) \cap (Sym^{q+r}(V^\vee) \otimes E)$.

We can construct a graded module

$$\mathcal{M}_\bullet := \bigoplus_k \mathcal{N}_k \Rightarrow K_\bullet(\mathcal{M}_\bullet) \Rightarrow H_{p,q}(K_\bullet(\mathcal{M}_\bullet)).$$

Roughly

An involutive non-linear PDE is one whose symbol module is regular.

The (geometric) symbol of an involutive non-linear PDE induces at each point a polynomial (co)module - **characteristic module**.

Approach: Use Koszul homology or \mathbb{R} -dual non-linear Spencer cohomology to determine the length of finite resolutions (determine the regularity, analogous to Castelnuovo-Mumford).

- Only looking at involutive PDEs is not a huge restriction - analytic systems can always be made involutive (Cartan-Kuranishi Theorem).
- Most examples in Mathematical Physics are of this type e.g. Yang-Mills, Einstein, Einstein-Maxwell, Higher p -form theories...

Roughly

An involutive non-linear PDE is one whose symbol module is regular.

The (geometric) symbol of an involutive non-linear PDE induces at each point a polynomial (co)module - **characteristic module**.

Approach: Use Koszul homology or \mathbb{R} -dual non-linear Spencer cohomology to determine the length of finite resolutions (determine the regularity, analogous to Castelnuovo-Mumford).

- Only looking at involutive PDEs is not a huge restriction - analytic systems can always be made involutive (Cartan-Kuranishi Theorem).
- Most examples in Mathematical Physics are of this type e.g. Yang-Mills, Einstein, Einstein-Maxwell, Higher p -form theories...

Roughly

An involutive non-linear PDE is one whose symbol module is regular.

The (geometric) symbol of an involutive non-linear PDE induces at each point a polynomial (co)module - **characteristic module**.

Approach: Use Koszul homology or \mathbb{R} -dual non-linear Spencer cohomology to determine the length of finite resolutions (determine the regularity, analogous to Castelnuovo-Mumford).

- Only looking at involutive PDEs is not a huge restriction - analytic systems can always be made involutive (Cartan-Kuranishi Theorem).
- Most examples in Mathematical Physics are of this type e.g. Yang-Mills, Einstein, Einstein-Maxwell, Higher p -form theories...

Involutivity and the degree of involution correspond to a certain cohomological vanishing criteria (Cartan, Goldschmidt and Spencer)

Spencer cohomology \sim Sheaf cohomology for PDEs (the sheaf is the solution sheaf).

Spencer δ -cohomology \sim Cohomology of graded polynomial de Rham complex for symbolic systems $\mathcal{N} = \{\mathcal{N}_{k+r} : r \geq 0\}$.

Involutivity and the degree of involution correspond to a certain cohomological vanishing criteria (Cartan, Goldschmidt and Spencer)

Spencer cohomology \sim Sheaf cohomology for PDEs (the sheaf is the solution sheaf).

Spencer δ -cohomology \sim Cohomology of graded polynomial de Rham complex for symbolic systems $\mathcal{N} = \{\mathcal{N}_{k+r} : r \geq 0\}$.

Involutivity and the degree of involution correspond to a certain cohomological vanishing criteria (Cartan, Goldschmidt and Spencer)

Spencer cohomology \sim Sheaf cohomology for PDEs (the sheaf is the solution sheaf).

Spencer δ -cohomology \sim Cohomology of graded polynomial de Rham complex for symbolic systems $\mathcal{N} = \{\mathcal{N}_{k+r} : r \geq 0\}$.

Observation: for each $k \geq 1$, we have

$$0 \rightarrow \underbrace{\text{Sym}^k(\Omega_X^1) \otimes E}_{\text{(co)symbols live here}} \rightarrow J_X^k E \xrightarrow{\pi_{k-1}^k} J_X^{k-1} E \rightarrow 0.$$

The isomorphism is:

$$\text{Sym}^k(\Omega_X^1) \otimes E \xrightarrow{\cong} \text{Ker}(J_X^k E \rightarrow J_X^{k-1} E), \quad (9)$$

defined by $df_1 \cdots df_k \otimes e \mapsto \delta_{f_1, \dots, f_k}(j_k)(e)$, $e \in E$, where

$\delta_{f_1, \dots, f_k} := \delta_{f_1} \circ \cdots \circ \delta_{f_k}$, is the nested commutator, where $\delta_{f_i} := [f_i, -]$.

Cosymbol \mathcal{N}_k of Z_k is:

$$0 \rightarrow \mathcal{N}_k \rightarrow J_X^k E|_{Z_k} \rightarrow J_X^{k-1} E|_{Z_{k-1}} \rightarrow 0.$$

Observation: for each $k \geq 1$, we have

$$0 \rightarrow \underbrace{\text{Sym}^k(\Omega_X^1) \otimes E}_{\text{(co)symbols live here}} \rightarrow J_X^k E \xrightarrow{\pi_{k-1}^k} J_X^{k-1} E \rightarrow 0.$$

The isomorphism is:

$$\text{Sym}^k(\Omega_X^1) \otimes E \xrightarrow{\cong} \text{Ker}(J_X^k E \rightarrow J_X^{k-1} E), \quad (9)$$

defined by $df_1 \cdots df_k \otimes e \mapsto \delta_{f_1, \dots, f_k}(j_k)(e)$, $e \in E$, where

$\delta_{f_1, \dots, f_k} := \delta_{f_1} \circ \cdots \circ \delta_{f_k}$, is the nested commutator, where $\delta_{f_i} := [f_i, -]$.

Cosymbol \mathcal{N}_k of Z_k is:

$$0 \rightarrow \mathcal{N}_k \rightarrow J_X^k E|_{Z_k} \rightarrow J_X^{k-1} E|_{Z_{k-1}} \rightarrow 0.$$

Observation: for each $k \geq 1$, we have

$$0 \rightarrow \underbrace{Sym^k(\Omega_X^1) \otimes E}_{\text{(co)symbols live here}} \rightarrow J_X^k E \xrightarrow{\pi_{k-1}^k} J_X^{k-1} E \rightarrow 0.$$

The isomorphism is:

$$Sym^k(\Omega_X^1) \otimes E \xrightarrow{\cong} \text{Ker}(J_X^k E \rightarrow J_X^{k-1} E), \quad (9)$$

defined by $df_1 \cdots df_k \otimes e \mapsto \delta_{f_1, \dots, f_k}(j_k)(e)$, $e \in E$, where

$\delta_{f_1, \dots, f_k} := \delta_{f_1} \circ \cdots \circ \delta_{f_k}$, is the nested commutator, where $\delta_{f_i} := [f_i, -]$.

Cosymbol \mathcal{N}_k of Z_k is:

$$0 \rightarrow \mathcal{N}_k \rightarrow J_X^k E|_{Z_k} \rightarrow J_X^{k-1} E|_{Z_{k-1}} \rightarrow 0.$$

Observation: for each $k \geq 1$, we have

$$0 \rightarrow \underbrace{Sym^k(\Omega_X^1) \otimes E}_{\text{(co)symbols live here}} \rightarrow J_X^k E \xrightarrow{\pi_{k-1}^k} J_X^{k-1} E \rightarrow 0.$$

The isomorphism is:

$$Sym^k(\Omega_X^1) \otimes E \xrightarrow{\sim} \text{Ker}(J_X^k E \rightarrow J_X^{k-1} E), \quad (9)$$

defined by $df_1 \cdots df_k \otimes e \mapsto \delta_{f_1, \dots, f_k}(j_k)(e)$, $e \in E$, where

$\delta_{f_1, \dots, f_k} := \delta_{f_1} \circ \cdots \circ \delta_{f_k}$, is the nested commutator, where $\delta_{f_i} := [f_i, -]$.

Cosymbol \mathcal{N}_k of Z_k is:

$$0 \rightarrow \mathcal{N}_k \rightarrow J_X^k E|_{Z_k} \rightarrow J_X^{k-1} E|_{Z_{k-1}} \rightarrow 0.$$

Spencer cohomology

Given a coherent sheaf E on X , the k -th Jet-Spencer complex of E is,

$$J^k Sp_X^\bullet(E) := 0 \rightarrow E \xrightarrow{j_k} J_X^k E \xrightarrow{S} \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-1} E \xrightarrow{S} \cdots, \quad (10)$$

with $S(\omega \otimes j_k(e)) := d\omega \otimes j_{k-1}(e)$. Projection $J_X^k E \rightarrow J_X^{k-1} E$ induces a morphism of complexes:

$$\begin{array}{ccccccccccc} 0 & \longrightarrow & E & \longrightarrow & J_X^k E & \longrightarrow & \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-1} E & \longrightarrow & \wedge^2 \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-2} E & \longrightarrow & \cdots \\ & & \downarrow \\ 0 & \longrightarrow & E & \longrightarrow & J_X^{k-1} E & \longrightarrow & \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-2} E & \longrightarrow & \wedge^2 \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-3} E & \longrightarrow & \cdots \end{array}$$

For each $k \geq 1$ kernel of Jet-Spencer complexes:

Definition

The δ -Spencer complex of E (of degree k) is,

$$0 \rightarrow S^k(\Omega_X^1) \otimes_{\mathcal{O}_X} E \xrightarrow{\delta} \Omega_X^1 \otimes_{\mathcal{O}_X} S^{k-1}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \xrightarrow{\delta} \Omega_X^2 \otimes_{\mathcal{O}_X} S^{k-2}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \cdots$$

It is a complex of \mathcal{O}_X -modules with differential

$$\delta : (\omega \otimes u \otimes e) \mapsto (-1)^{|\omega|} \omega \wedge i(u) \otimes e, \text{ with } i : S^{k-r} \Omega_X^1 \hookrightarrow \Omega_X^1 \otimes S^{k-r-1} \Omega_X^1.$$

Given a coherent sheaf E on X , the k -th Jet-Spencer complex of E is,

$$J^k Sp_X^\bullet(E) := 0 \rightarrow E \xrightarrow{j_k} J_X^k E \xrightarrow{S} \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-1} E \xrightarrow{S} \cdots, \quad (10)$$

with $S(\omega \otimes j_k(e)) := d\omega \otimes j_{k-1}(e)$. Projection $J_X^k E \rightarrow J_X^{k-1} E$ induces a morphism of complexes:

$$\begin{array}{ccccccccccc} 0 & \longrightarrow & E & \longrightarrow & J_X^k E & \longrightarrow & \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-1} E & \longrightarrow & \wedge^2 \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-2} E & \longrightarrow & \cdots \\ & & \downarrow \\ 0 & \longrightarrow & E & \longrightarrow & J_X^{k-1} E & \longrightarrow & \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-2} E & \longrightarrow & \wedge^2 \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-3} E & \longrightarrow & \cdots \end{array}$$

For each $k \geq 1$ kernel of Jet-Spencer complexes:

Definition

The δ -Spencer complex of E (of degree k) is,

$$0 \rightarrow S^k(\Omega_X^1) \otimes_{\mathcal{O}_X} E \xrightarrow{\delta} \Omega_X^1 \otimes_{\mathcal{O}_X} S^{k-1}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \xrightarrow{\delta} \Omega_X^2 \otimes_{\mathcal{O}_X} S^{k-2}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \cdots$$

It is a complex of \mathcal{O}_X -modules with differential

$$\delta : (\omega \otimes u \otimes e) \mapsto (-1)^{|\omega|} \omega \wedge i(u) \otimes e, \text{ with } i : S^{k-r} \Omega_X^1 \hookrightarrow \Omega_X^1 \otimes S^{k-r-1} \Omega_X^1.$$

Given a coherent sheaf E on X , the k -th Jet-Spencer complex of E is,

$$J^k Sp_X^\bullet(E) := 0 \rightarrow E \xrightarrow{j_k} J_X^k E \xrightarrow{S} \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-1} E \xrightarrow{S} \cdots, \quad (10)$$

with $S(\omega \otimes j_k(e)) := d\omega \otimes j_{k-1}(e)$. Projection $J_X^k E \rightarrow J_X^{k-1} E$ induces a morphism of complexes:

$$\begin{array}{ccccccccccc} 0 & \longrightarrow & E & \longrightarrow & J_X^k E & \longrightarrow & \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-1} E & \longrightarrow & \wedge^2 \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-2} E & \longrightarrow & \cdots \\ & & \downarrow \\ 0 & \longrightarrow & E & \longrightarrow & J_X^{k-1} E & \longrightarrow & \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-2} E & \longrightarrow & \wedge^2 \Omega_X^1 \otimes_{\mathcal{O}_X} J_X^{k-3} E & \longrightarrow & \cdots \end{array}$$

For each $k \geq 1$ kernel of Jet-Spencer complexes:

Definition

The δ -Spencer complex of E (of degree k) is,

$$0 \rightarrow S^k(\Omega_X^1) \otimes_{\mathcal{O}_X} E \xrightarrow{\delta} \Omega_X^1 \otimes_{\mathcal{O}_X} S^{k-1}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \xrightarrow{\delta} \Omega_X^2 \otimes_{\mathcal{O}_X} S^{k-2}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \cdots$$

It is a complex of \mathcal{O}_X -modules with differential

$$\delta : (\omega \otimes u \otimes e) \mapsto (-1)^{|\omega|} \omega \wedge i(u) \otimes e, \text{ with } i : S^{k-r} \Omega_X^1 \hookrightarrow \Omega_X^1 \otimes S^{k-r-1} \Omega_X^1.$$

In local charts

Restricting to Z_k , we obtain δ -Spencer complexes for cosymbols \mathcal{N}_k .

Consider $\iota_k : Z_k = \{F(x, u, u_{[\sigma]}) = 0\} \hookrightarrow J_X^k(E) :$

$$T_\theta J_X^k E = \text{span} \left\{ v := \dot{x}^i \frac{\partial}{\partial x_i} + \dot{u}_\sigma^\alpha \frac{\partial}{\partial u_\sigma^\alpha} \right\}, \text{ and } T_\theta Z_k = \{v \in T_\theta J_X^k E \mid TF(v) = 0\}.$$

A linear system for the coefficients of v :

$$\sum_{i=1}^n \frac{\partial F}{\partial x^i}(\theta) \cdot x^i + \sum_{1 \leq \alpha \leq m, 1 \leq \sigma \leq \text{ord}(F)} \frac{\partial F}{\partial u_\sigma^\alpha}(\theta) \dot{u}_\sigma^\alpha = 0.$$

The **geometric symbol** \mathcal{N}_k , of Z_k is the family of vector spaces:

$$(\mathcal{N}_k)_z := T_z Z_k \cap T_{J_X^k E / J_X^{k-1} E, z} \simeq T_{\pi_{k-1}^k|_{Z_k}}, \text{ (relative tangents).}$$

Coordinates

For $Z_k = \{F = 0\}$, then $\mathcal{N}_k = \sum_{1 \leq \alpha \leq m, |\sigma| = \text{ord}(F)} \frac{\partial F}{\partial u_\sigma^\alpha}(\theta) \dot{u}_\sigma^\alpha = 0$.

In local charts

Restricting to Z_k , we obtain δ -Spencer complexes for cosymbols \mathcal{N}_k .

Consider $\iota_k : Z_k = \{F(x, u, u_{[\sigma]}) = 0\} \hookrightarrow J_X^k(E) :$

$$T_\theta J_X^k E = \text{span} \left\{ v := \dot{x}^i \frac{\partial}{\partial x_i} + \dot{u}_\sigma^\alpha \frac{\partial}{\partial u_\sigma^\alpha} \right\}, \text{ and } T_\theta Z_k = \{v \in T_\theta J_X^k E \mid TF(v) = 0\}.$$

A linear system for the coefficients of v :

$$\sum_{i=1}^n \frac{\partial F}{\partial x^i}(\theta) \cdot x^i + \sum_{1 \leq \alpha \leq m, 1 \leq \sigma \leq \text{ord}(F)} \frac{\partial F}{\partial u_\sigma^\alpha}(\theta) \dot{u}_\sigma^\alpha = 0.$$

The **geometric symbol** \mathcal{N}_k , of Z_k is the family of vector spaces:

$$(\mathcal{N}_k)_z := T_z Z_k \cap T_{J_X^k E / J_X^{k-1} E, z} \simeq T_{\pi_{k-1}^k|_{Z_k}}, \text{ (relative tangents).}$$

Coordinates

For $Z_k = \{F = 0\}$, then $\mathcal{N}_k = \sum_{1 \leq \alpha \leq m, |\sigma| = \text{ord}(F)} \frac{\partial F}{\partial u_\sigma^\alpha}(\theta) \dot{u}_\sigma^\alpha = 0$.

In local charts

Restricting to Z_k , we obtain δ -Spencer complexes for cosymbols \mathcal{N}_k .

Consider $\iota_k : Z_k = \{F(x, u, u_{[\sigma]}) = 0\} \hookrightarrow J_X^k(E) :$

$$T_\theta J_X^k E = \text{span} \left\{ v := \dot{x}^i \frac{\partial}{\partial x_i} + \dot{u}_\sigma^\alpha \frac{\partial}{\partial u_\sigma^\alpha} \right\}, \text{ and } T_\theta Z_k = \{v \in T_\theta J_X^k E \mid TF(v) = 0\}.$$

A linear system for the coefficients of v :

$$\sum_{i=1}^n \frac{\partial F}{\partial x^i}(\theta) \cdot x^i + \sum_{1 \leq \alpha \leq m, 1 \leq \sigma \leq \text{ord}(F)} \frac{\partial F}{\partial u_\sigma^\alpha}(\theta) \dot{u}_\sigma^\alpha = 0.$$

The **geometric symbol** \mathcal{N}_k , of Z_k is the family of vector spaces:

$$(\mathcal{N}_k)_z := T_z Z_k \cap T_{J_X^k E / J_X^{k-1} E, z} \simeq T_{\pi_{k-1}^k|_{Z_k}}, \text{ (relative tangents).}$$

Coordinates

For $Z_k = \{F = 0\}$, then $\mathcal{N}_k = \sum_{1 \leq \alpha \leq m, |\sigma| = \text{ord}(F)} \frac{\partial F}{\partial u_\sigma^\alpha}(\theta) \dot{u}_\sigma^\alpha = 0$.

In local charts

Restricting to Z_k , we obtain δ -Spencer complexes for cosymbols \mathcal{N}_k .

Consider $\iota_k : Z_k = \{F(x, u, u_{[\sigma]}) = 0\} \hookrightarrow J_X^k(E) :$

$$T_\theta J_X^k E = \text{span} \left\{ v := \dot{x}^i \frac{\partial}{\partial x_i} + \dot{u}_\sigma^\alpha \frac{\partial}{\partial u_\sigma^\alpha} \right\}, \text{ and } T_\theta Z_k = \{v \in T_\theta J_X^k E \mid TF(v) = 0\}.$$

A linear system for the coefficients of v :

$$\sum_{i=1}^n \frac{\partial F}{\partial x^i}(\theta) \cdot x^i + \sum_{1 \leq \alpha \leq m, 1 \leq \sigma \leq \text{ord}(F)} \frac{\partial F}{\partial u_\sigma^\alpha}(\theta) \dot{u}_\sigma^\alpha = 0.$$

The **geometric symbol** \mathcal{N}_k , of Z_k is the family of vector spaces:

$$(\mathcal{N}_k)_z := T_z Z_k \cap T_{J_X^k E / J_X^{k-1} E, z} \simeq T_{\pi_{k-1}^k|_{Z_k}}, \text{ (relative tangents).}$$

Coordinates

For $Z_k = \{F = 0\}$, then $\mathcal{N}_k = \sum_{1 \leq \alpha \leq m, |\sigma| = \text{ord}(F)} \frac{\partial F}{\partial u_\sigma^\alpha}(\theta) \dot{u}_\sigma^\alpha = 0$.

Symbols and Characteristic Modules, Algebro-geometrically

Consider relative differentials of dg of holomorphic functions $g \in \mathcal{O}_{J_X^\ell E}$ i.e.

$$d(g) \in \Omega^1_{J_X^\ell E / J_X^{\ell-1} E} \simeq \mathcal{O}_{J_X^\ell E}[\xi_1, \dots, \xi_n]_k, \text{ with } (x; \xi) \in T^* X.$$

Put $\mathcal{O}_{Z_r} = \mathcal{O}_{J_X^r E} / I_r$.

Order r symbol: $\mathcal{N}_r \subset \bigoplus_{\alpha} \mathcal{O}_{Z_r}[\xi_1, \dots, \xi_n]_r d(u^\alpha)$, generated by classes dF mod I_r of $F \in I_r$.

Symbol: the associated graded module generated by \mathcal{N}_r .

Characteristic module: graded quotient $\mathcal{M} := \bigoplus_r \mathcal{O}_{Z_r}[\xi_1, \dots, \xi_n] / \mathcal{N}_r$.

* Alternatively, look at conormal I_r / I_r^2 of Z_r , as sub-sheaf of $\Omega^1_{J_X^r E} \otimes \mathcal{O}_{Z_r}$.
Then,

$$\mathcal{M}_r \simeq \Omega^1_{Z_r / Z_{r-1}}.$$

From $Z^\infty \Rightarrow F^r Z := Z_r \subset J_X^r(E)$,

$$\mathcal{O}_{F^r Z} \otimes_{\mathcal{O}_{F^{r-1} Z}} \Omega^1_{F^{r-1} Z / X} \rightarrow \Omega^1_{F^r Z / X} \rightarrow \Omega^1_{F^r Z / F^{r-1} Z} \rightarrow 0. \quad (11)$$

Applying $\mathcal{O}_{Z^\infty} \otimes_{\mathcal{O}(F^r Z)} (-)$:

$$\mathcal{O}_{Z^\infty} \otimes_{\mathcal{O}_{F^{r-1} Z}} \Omega^1_{F^{r-1} Z / X} \rightarrow \mathcal{O}_{Z^\infty} \otimes_{\mathcal{O}_{F^r Z}} \Omega^1_{F^r Z / X} \rightarrow \mathcal{O}_{Z^\infty} \otimes_{\mathcal{O}_{F^r Z}} \Omega^1_{F^r Z / F^{r-1} Z} \rightarrow 0.$$

In more generality:

Consider a family of prolonged operators: $\{F_P^{(\ell)} : J_X^{k+\ell} E \rightarrow J_X^\ell F\}_{\ell \geq 0}$.

There is an induced family of (prolonged) symbol maps:

$$\sigma_{\ell,k}(F_P) : \mathcal{S}ym_{\mathcal{O}_X}^{k+\ell}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \rightarrow \mathcal{S}ym_{\mathcal{O}_X}^\ell(\Omega_X^1) \otimes F. \quad (12)$$

A family of **symbolic modules**: $\{\mathcal{N}^{k+\ell} := \ker(\sigma_{\ell,k}(F_P))\}_{\ell \geq 0}$

The Spencer δ -complex:

$$0 \rightarrow \mathcal{N}^{k+\ell} \xrightarrow{\delta} \Omega_X^1 \otimes \mathcal{N}^{k+\ell-1} \rightarrow \Omega_X^2 \otimes \mathcal{N}^{k+\ell-2} \rightarrow \dots$$

Cohomologies are denoted $H_\delta^{k+\ell,i}(F_P)$.

In more generality:

Consider a family of prolonged operators: $\{F_P^{(\ell)} : J_X^{k+\ell} E \rightarrow J_X^\ell F\}_{\ell \geq 0}$.

There is an induced family of (prolonged) symbol maps:

$$\sigma_{\ell,k}(F_P) : \mathcal{S}ym_{\mathcal{O}_X}^{k+\ell}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \rightarrow \mathcal{S}ym_{\mathcal{O}_X}^\ell(\Omega_X^1) \otimes F. \quad (12)$$

A family of **symbolic modules**: $\{\mathcal{N}^{k+\ell} := \ker(\sigma_{\ell,k}(F_P))\}_{\ell \geq 0}$

The Spencer δ -complex:

$$0 \rightarrow \mathcal{N}^{k+\ell} \xrightarrow{\delta} \Omega_X^1 \otimes \mathcal{N}^{k+\ell-1} \rightarrow \Omega_X^2 \otimes \mathcal{N}^{k+\ell-2} \rightarrow \dots$$

Cohomologies are denoted $H_\delta^{k+\ell,i}(F_P)$.

In more generality:

Consider a family of prolonged operators: $\{F_P^{(\ell)} : J_X^{k+\ell} E \rightarrow J_X^\ell F\}_{\ell \geq 0}$.

There is an induced family of (prolonged) symbol maps:

$$\sigma_{\ell,k}(F_P) : \mathcal{S}ym_{\mathcal{O}_X}^{k+\ell}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \rightarrow \mathcal{S}ym_{\mathcal{O}_X}^\ell(\Omega_X^1) \otimes F. \quad (12)$$

A family of **symbolic modules**: $\{\mathcal{N}^{k+\ell} := \ker(\sigma_{\ell,k}(F_P))\}_{\ell \geq 0}$

The Spencer δ -complex:

$$0 \rightarrow \mathcal{N}^{k+\ell} \xrightarrow{\delta} \Omega_X^1 \otimes \mathcal{N}^{k+\ell-1} \rightarrow \Omega_X^2 \otimes \mathcal{N}^{k+\ell-2} \rightarrow \dots$$

Cohomologies are denoted $H_\delta^{k+\ell,i}(F_P)$.

In more generality:

Consider a family of prolonged operators: $\{F_P^{(\ell)} : J_X^{k+\ell} E \rightarrow J_X^\ell F\}_{\ell \geq 0}$.

There is an induced family of (prolonged) symbol maps:

$$\sigma_{\ell,k}(F_P) : \mathcal{S}ym_{\mathcal{O}_X}^{k+\ell}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \rightarrow \mathcal{S}ym_{\mathcal{O}_X}^\ell(\Omega_X^1) \otimes F. \quad (12)$$

A family of **symbolic modules**: $\{\mathcal{N}^{k+\ell} := \ker(\sigma_{\ell,k}(F_P))\}_{\ell \geq 0}$

The Spencer δ -complex:

$$0 \rightarrow \mathcal{N}^{k+\ell} \xrightarrow{\delta} \Omega_X^1 \otimes \mathcal{N}^{k+\ell-1} \rightarrow \Omega_X^2 \otimes \mathcal{N}^{k+\ell-2} \rightarrow \dots$$

Cohomologies are denoted $H_\delta^{k+\ell,i}(F_P)$.

In more generality:

Consider a family of prolonged operators: $\{F_P^{(\ell)} : J_X^{k+\ell} E \rightarrow J_X^\ell F\}_{\ell \geq 0}$.

There is an induced family of (prolonged) symbol maps:

$$\sigma_{\ell,k}(F_P) : \mathcal{S}ym_{\mathcal{O}_X}^{k+\ell}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \rightarrow \mathcal{S}ym_{\mathcal{O}_X}^\ell(\Omega_X^1) \otimes F. \quad (12)$$

A family of **symbolic modules**: $\{\mathcal{N}^{k+\ell} := \ker(\sigma_{\ell,k}(F_P))\}_{\ell \geq 0}$

The Spencer δ -complex:

$$0 \rightarrow \mathcal{N}^{k+\ell} \xrightarrow{\delta} \Omega_X^1 \otimes \mathcal{N}^{k+\ell-1} \rightarrow \Omega_X^2 \otimes \mathcal{N}^{k+\ell-2} \rightarrow \dots$$

Cohomologies are denoted $H_\delta^{k+\ell,i}(F_P)$.

In more generality:

Consider a family of prolonged operators: $\{F_P^{(\ell)} : J_X^{k+\ell} E \rightarrow J_X^\ell F\}_{\ell \geq 0}$.

There is an induced family of (prolonged) symbol maps:

$$\sigma_{\ell,k}(F_P) : \mathcal{S}ym_{\mathcal{O}_X}^{k+\ell}(\Omega_X^1) \otimes_{\mathcal{O}_X} E \rightarrow \mathcal{S}ym_{\mathcal{O}_X}^\ell(\Omega_X^1) \otimes F. \quad (12)$$

A family of **symbolic modules**: $\{\mathcal{N}^{k+\ell} := \ker(\sigma_{\ell,k}(F_P))\}_{\ell \geq 0}$

The Spencer δ -complex:

$$0 \rightarrow \mathcal{N}^{k+\ell} \xrightarrow{\delta} \Omega_X^1 \otimes \mathcal{N}^{k+\ell-1} \rightarrow \Omega_X^2 \otimes \mathcal{N}^{k+\ell-2} \rightarrow \dots$$

Cohomologies are denoted $H_\delta^{k+\ell,i}(F_P)$.

The situation is summarized by the commuting diagram,

$$\begin{array}{ccccccc}
 & 0 & & 0 & & 0 & \\
 & \downarrow & & \downarrow & & \downarrow & \\
 0 & \longrightarrow & \mathcal{N}^{(r)} & \longrightarrow & \mathcal{N}^{(r-1)} \otimes \Omega_X^1 & \longrightarrow & \cdots \longrightarrow \mathcal{N}^{(r-n)} \otimes \Omega_X^n \rightarrow 0 \\
 & \downarrow & & \downarrow & & \downarrow & \\
 0 & \longrightarrow & \text{pr}_r Z & \longrightarrow & \text{pr}_{r-1} Z \otimes \Omega_X^1 & \longrightarrow & \cdots \longrightarrow \text{pr}_{r-n} Z \otimes \Omega_X^n \rightarrow 0 \\
 & \downarrow & & \downarrow & & \downarrow & \\
 0 & \longrightarrow & \text{pr}_{r-1} Z & \longrightarrow & \text{pr}_{r-2} Z \otimes \Omega_X^1 & \longrightarrow & \cdots \longrightarrow \text{pr}_{r-n-1} Z \otimes \Omega_X^n \rightarrow 0 \\
 & \downarrow & & \downarrow & & \downarrow & \\
 & 0 & & 0 & & 0 & \\
 \end{array}
 \tag{13}$$

Interpretation! \mathcal{D} -involutivity \sim Serre vanishing (for sheaf of solutions).

Definition: Let Z be formally integrable and involutive. Its *degree of involution* is

$$\text{reg}_{Sp}(\mathcal{I}) := \inf_{q_0 \in \mathbb{N}} \{H_{\delta}^{p,q}(\mathcal{M}_{\bullet}) = 0, \text{ for all } 0 \leq p \leq \dim X, q \geq q_0\}.$$

Proposition/Observation (\star)

Suppose that \mathcal{I} is formally integrable and Spencer regular. Then its degree of involution, agrees with the Spencer-regularity, and thus agrees with the Castelnuovo-Mumford regularity of its (linearized) symbolic \mathcal{D} -module.

Proof. $\mathcal{I}_{Z^\infty} = \{F_A\} \rightsquigarrow \sigma(\mathcal{I}_{Z^\infty}) := \{\sigma_{\ell,k}(\ell_{F_A})\}$. They are homogeneous polynomials determining a ‘symbol ideal’ in a polynomial algebra (on T^*X). Spencer sequences and Koszul sequences are dual.

Interpretation! \mathcal{D} -involutivity \sim Serre vanishing (for sheaf of solutions).

Definition: Let Z be formally integrable and involutive. Its *degree of involution* is

$$\text{reg}_{Sp}(\mathcal{I}) := \inf_{q_0 \in \mathbb{N}} \{ H_{\delta}^{p,q}(\mathcal{M}_{\bullet}) = 0, \text{ for all } 0 \leq p \leq \dim X, q \geq q_0 \}.$$

Proposition/Observation (\star)

Suppose that \mathcal{I} is formally integrable and Spencer regular. Then its degree of involution, agrees with the Spencer-regularity, and thus agrees with the Castelnuovo-Mumford regularity of its (linearized) symbolic \mathcal{D} -module.

Proof. $\mathcal{I}_{Z^\infty} = \{F_A\} \rightsquigarrow \sigma(\mathcal{I}_{Z^\infty}) := \{\sigma_{\ell,k}(\ell_{F_A})\}$. They are homogeneous polynomials determining a ‘symbol ideal’ in a polynomial algebra (on T^*X). Spencer sequences and Koszul sequences are dual.

Interpretation! \mathcal{D} -involutivity \sim Serre vanishing (for sheaf of solutions).

Definition: Let Z be formally integrable and involutive. Its *degree of involution* is

$$\text{reg}_{Sp}(\mathcal{I}) := \inf_{q_0 \in \mathbb{N}} \{ H_{\delta}^{p,q}(\mathcal{M}_{\bullet}) = 0, \text{ for all } 0 \leq p \leq \dim X, q \geq q_0 \}.$$

Proposition/Observation (\star)

Suppose that \mathcal{I} is formally integrable and Spencer regular. Then its degree of involution, agrees with the Spencer-regularity, and thus agrees with the Castelnuovo-Mumford regularity of its (linearized) symbolic \mathcal{D} -module.

Proof. $\mathcal{I}_{Z^\infty} = \{F_A\} \rightsquigarrow \sigma(\mathcal{I}_{Z^\infty}) := \{\sigma_{\ell,k}(\ell_{F_A})\}$. They are homogeneous polynomials determining a ‘symbol ideal’ in a polynomial algebra (on T^*X). Spencer sequences and Koszul sequences are dual.

Interpretation! \mathcal{D} -involutivity \sim Serre vanishing (for sheaf of solutions).

Definition: Let Z be formally integrable and involutive. Its *degree of involution* is

$$\text{reg}_{Sp}(\mathcal{I}) := \inf_{q_0 \in \mathbb{N}} \left\{ H_{\delta}^{p,q}(\mathcal{M}_{\bullet}) = 0, \text{ for all } 0 \leq p \leq \dim X, q \geq q_0 \right\}.$$

Proposition/Observation (\star)

Suppose that \mathcal{I} is formally integrable and Spencer regular. Then its degree of involution, agrees with the Spencer-regularity, and thus agrees with the Castelnuovo-Mumford regularity of its (linearized) symbolic \mathcal{D} -module.

Proof. $\mathcal{I}_{Z^\infty} = \{F_A\} \rightsquigarrow \sigma(\mathcal{I}_{Z^\infty}) := \{\sigma_{\ell,k}(\ell_{F_A})\}$. They are homogeneous polynomials determining a ‘symbol ideal’ in a polynomial algebra (on T^*X). Spencer sequences and Koszul sequences are dual.

Pure geometric reasoning will not suffice to known when new integrability conditions stop occurring.

Use also algebraic theory: formal integrability is often not sufficient and one introduces ‘involution’.

Rough idea: A natural polynomial structure lies hidden in the inner geometry of the jet bundle formalism.

This allows us to associate with any $\{F = 0\}$ a \mathcal{D} -ideal \mathcal{I} and graded symbol module \mathcal{M}_\bullet over a polynomial algebra.

Constructing integrability conditions of $\{F = 0\}$ is then formalised via the syzygies of \mathcal{M} .

Remark: We make contact with classical questions in commutative algebra and algebraic geometry.

Summary: The role of involution

Pure geometric reasoning will not suffice to known when new integrability conditions stop occurring.

Use also algebraic theory: formal integrability is often not sufficient and one introduces ‘involution’.

Rough idea: A natural polynomial structure lies hidden in the inner geometry of the jet bundle formalism.

This allows us to associate with any $\{F = 0\}$ a \mathcal{D} -ideal \mathcal{I} and graded symbol module \mathcal{M}_\bullet over a polynomial algebra.

Constructing integrability conditions of $\{F = 0\}$ is then formalised via the syzygies of \mathcal{M} .

Remark: We make contact with classical questions in commutative algebra and algebraic geometry.

Pure geometric reasoning will not suffice to known when new integrability conditions stop occurring.

Use also algebraic theory: formal integrability is often not sufficient and one introduces ‘involution’.

Rough idea: A natural polynomial structure lies hidden in the inner geometry of the jet bundle formalism.

This allows us to associate with any $\{F = 0\}$ a \mathcal{D} -ideal \mathcal{I} and graded symbol module \mathcal{M}_\bullet over a polynomial algebra.

Constructing integrability conditions of $\{F = 0\}$ is then formalised via the syzygies of \mathcal{M} .

Remark: We make contact with classical questions in commutative algebra and algebraic geometry.

Pure geometric reasoning will not suffice to known when new integrability conditions stop occurring.

Use also algebraic theory: formal integrability is often not sufficient and one introduces ‘involution’.

Rough idea: A natural polynomial structure lies hidden in the inner geometry of the jet bundle formalism.

This allows us to associate with any $\{F = 0\}$ a \mathcal{D} -ideal \mathcal{I} and graded symbol module \mathcal{M}_\bullet over a polynomial algebra.

Constructing integrability conditions of $\{F = 0\}$ is then formalised via the syzygies of \mathcal{M} .

Remark: We make contact with classical questions in commutative algebra and algebraic geometry.

Pure geometric reasoning will not suffice to known when new integrability conditions stop occurring.

Use also algebraic theory: formal integrability is often not sufficient and one introduces ‘involution’.

Rough idea: A natural polynomial structure lies hidden in the inner geometry of the jet bundle formalism.

This allows us to associate with any $\{F = 0\}$ a \mathcal{D} -ideal \mathcal{I} and graded symbol module \mathcal{M}_\bullet over a polynomial algebra.

Constructing integrability conditions of $\{F = 0\}$ is then formalised via the syzygies of \mathcal{M} .

Remark: We make contact with classical questions in commutative algebra and algebraic geometry.

Pure geometric reasoning will not suffice to known when new integrability conditions stop occurring.

Use also algebraic theory: formal integrability is often not sufficient and one introduces ‘involution’.

Rough idea: A natural polynomial structure lies hidden in the inner geometry of the jet bundle formalism.

This allows us to associate with any $\{F = 0\}$ a \mathcal{D} -ideal \mathcal{I} and graded symbol module \mathcal{M}_\bullet over a polynomial algebra.

Constructing integrability conditions of $\{F = 0\}$ is then formalised via the syzygies of \mathcal{M} .

Remark: We make contact with classical questions in commutative algebra and algebraic geometry.

By Prop. (\star) : associate a $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$ using resolutions of symbol/characteristic module \mathcal{M}_\bullet . Such a resolution exists, expressible via Spencer δ -cohomology.

Encodes the dimensions of $\text{Sol}(\mathcal{I}_{Z^\infty})$ (Cartan characters) and may be determined geometrically from the dimension of the support the sheaf \mathcal{M}_\bullet .

Define characteristic varieties $\text{Char}_{\mathcal{D}}(Z^\infty) := \text{supp}(\mathcal{M}_\bullet) \subset Z^\infty \times_X T^*X$

For each point $z_\infty \in Z^\infty$, corresponding to solution, pull-back \mathcal{M}_\bullet is \mathcal{D} -module and Char is usual characteristic variety $\subset T_X^*$.

The \mathcal{D} -Hilbert polynomial:

$$P_{\mathcal{D}}(\mathcal{O}_{Z^\infty}, \ell) = \sum_{p,q} (-1)^{p+q} \dim \mathcal{H}_{Sp}^{p,q}(\mathcal{M}_\bullet) \cdot \binom{\ell + n - p - q - 1}{n - 1}. \quad (14)$$

By Prop. (\star) : associate a $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$ using resolutions of symbol/characteristic module \mathcal{M}_\bullet . Such a resolution exists, expressible via Spencer δ -cohomology.

Encodes the dimensions of $\text{Sol}(\mathcal{I}_{Z^\infty})$ (Cartan characters) and may be determined geometrically from the dimension of the support the sheaf \mathcal{M}_\bullet .

Define characteristic varieties $\text{Char}_{\mathcal{D}}(Z^\infty) := \text{supp}(\mathcal{M}_\bullet) \subset Z^\infty \times_X T^*X$

For each point $z_\infty \in Z^\infty$, corresponding to solution, pull-back \mathcal{M}_\bullet is \mathcal{D} -module and Char is usual characteristic variety $\subset T_X^*$.

The \mathcal{D} -Hilbert polynomial:

$$P_{\mathcal{D}}(\mathcal{O}_{Z^\infty}, \ell) = \sum_{p,q} (-1)^{p+q} \dim \mathcal{H}_{Sp}^{p,q}(\mathcal{M}_\bullet) \cdot \binom{\ell + n - p - q - 1}{n - 1}. \quad (14)$$

By Prop. (\star) : associate a $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$ using resolutions of symbol/characteristic module \mathcal{M}_\bullet . Such a resolution exists, expressible via Spencer δ -cohomology.

Encodes the dimensions of $\text{Sol}(\mathcal{I}_{Z^\infty})$ (Cartan characters) and may be determined geometrically from the dimension of the support the sheaf \mathcal{M}_\bullet .

Define **characteristic varieties** $\text{Char}_{\mathcal{D}}(Z^\infty) := \text{supp}(\mathcal{M}_\bullet) \subset Z^\infty \times_X T^*X$

For each point $z_\infty \in Z^\infty$, corresponding to solution, pull-back \mathcal{M}_\bullet is \mathcal{D} -module and Char is usual characteristic variety $\subset T_X^*$.

The **\mathcal{D} -Hilbert polynomial**:

$$P_{\mathcal{D}}(\mathcal{O}_{Z^\infty}, \ell) = \sum_{p,q} (-1)^{p+q} \dim \mathcal{H}_{Sp}^{p,q}(\mathcal{M}_\bullet) \cdot \binom{\ell + n - p - q - 1}{n - 1}. \quad (14)$$

By Prop. (\star) : associate a $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$ using resolutions of symbol/characteristic module \mathcal{M}_\bullet . Such a resolution exists, expressible via Spencer δ -cohomology.

Encodes the dimensions of $\text{Sol}(\mathcal{I}_{Z^\infty})$ (Cartan characters) and may be determined geometrically from the dimension of the support the sheaf \mathcal{M}_\bullet .

Define **characteristic varieties** $\text{Char}_{\mathcal{D}}(Z^\infty) := \text{supp}(\mathcal{M}_\bullet) \subset Z^\infty \times_X T^*X$

For each point $z_\infty \in Z^\infty$, corresponding to solution, pull-back \mathcal{M}_\bullet is \mathcal{D} -module and Char is usual characteristic variety $\subset T_X^*$.

The \mathcal{D} -Hilbert polynomial:

$$P_{\mathcal{D}}(\mathcal{O}_{Z^\infty}, \ell) = \sum_{p,q} (-1)^{p+q} \dim \mathcal{H}_{Sp}^{p,q}(\mathcal{M}_\bullet) \cdot \binom{\ell + n - p - q - 1}{n - 1}. \quad (14)$$

By Prop. (\star) : associate a $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty})$ using resolutions of symbol/characteristic module \mathcal{M}_\bullet . Such a resolution exists, expressible via Spencer δ -cohomology.

Encodes the dimensions of $\text{Sol}(\mathcal{I}_{Z^\infty})$ (Cartan characters) and may be determined geometrically from the dimension of the support the sheaf \mathcal{M}_\bullet .

Define **characteristic varieties** $\text{Char}_{\mathcal{D}}(Z^\infty) := \text{supp}(\mathcal{M}_\bullet) \subset Z^\infty \times_X T^*X$

For each point $z_\infty \in Z^\infty$, corresponding to solution, pull-back \mathcal{M}_\bullet is \mathcal{D} -module and Char is usual characteristic variety $\subset T_X^*$.

The **\mathcal{D} -Hilbert polynomial**:

$$P_{\mathcal{D}}(\mathcal{O}_{Z^\infty}, \ell) = \sum_{p,q} (-1)^{p+q} \dim \mathcal{H}_{S_p}^{p,q}(\mathcal{M}_\bullet) \cdot \binom{\ell + n - p - q - 1}{n - 1}. \quad (14)$$

Interpretations of Spencer cohomology: $H^{p,q}(\mathcal{M}_\bullet)$ encode e.g. $H^{*,1}(\mathcal{M}_\bullet)$ count $\#$ generators of the symbol module, $H^{p,1}(\mathcal{M}_\bullet)$ count $\#$ equations of order p , and $H^{*,2}(\mathcal{M}_\bullet)$ counts compatibility conditions.

Spencer-Euler characteristic: If $\mathcal{H}^{p,q}(\mathcal{M}_\bullet)$ are finite-dimensional,

$$\chi(Z^\infty) := \sum_{p,q} (-1)^{p+q} \dim(\mathcal{H}^{p,q}(\mathcal{M}_\bullet)).$$

Finite-dimensionality can be guaranteed, for instance, if the system is elliptic X is compact.

Suggest development of \mathcal{D} -geometric Index theory for elliptic (hyperbolic!) geometric PDEs.

Interpretations of Spencer cohomology: $H^{p,q}(\mathcal{M}_\bullet)$ encode e.g. $H^{*,1}(\mathcal{M}_\bullet)$ count $\#$ generators of the symbol module, $H^{p,1}(\mathcal{M}_\bullet)$ count $\#$ equations of order p , and $H^{*,2}(\mathcal{M}_\bullet)$ counts compatibility conditions.

Spencer-Euler characteristic: If $\mathcal{H}^{p,q}(\mathcal{M}_\bullet)$ are finite-dimensional,

$$\chi(Z^\infty) := \sum_{p,q} (-1)^{p+q} \dim(\mathcal{H}^{p,q}(\mathcal{M}_\bullet)).$$

Finite-dimensionality can be guaranteed, for instance, if the system is elliptic X is compact.

Suggest development of \mathcal{D} -geometric Index theory for elliptic (hyperbolic!) geometric PDEs.

Interpretations of Spencer cohomology: $H^{p,q}(\mathcal{M}_\bullet)$ encode e.g. $H^{*,1}(\mathcal{M}_\bullet)$ count $\#$ generators of the symbol module, $H^{p,1}(\mathcal{M}_\bullet)$ count $\#$ equations of order p , and $H^{*,2}(\mathcal{M}_\bullet)$ counts compatibility conditions.

Spencer-Euler characteristic: If $\mathcal{H}^{p,q}(\mathcal{M}_\bullet)$ are finite-dimensional,

$$\chi(Z^\infty) := \sum_{p,q} (-1)^{p+q} \dim(\mathcal{H}^{p,q}(\mathcal{M}_\bullet)).$$

Finite-dimensionality can be guaranteed, for instance, if the system is elliptic X is compact.

Suggest development of **\mathcal{D} -geometric Index theory** for elliptic (hyperbolic!) geometric PDEs.

Summary by analogy

Comparing with Algebraic Geometry \Rightarrow numerical classification of \mathcal{D} -finitely generated ideals associated with differentially consistent systems

Concept	Algebraic Geometry	\mathcal{D} -Geometry
<i>Sheaf</i>	Algebraic ideal $\mathcal{I}_Z \subset \mathcal{O}_X$	\mathcal{D} -ideal $\mathcal{I}_{Z^\infty} \subset \mathcal{A}^\ell$
<i>Geometric</i>	Sub-scheme Z	\mathcal{D} -subscheme $Z^\infty \hookrightarrow J_X^\infty E$
<i>Numerical</i>	Hilbert polynomial $P_{\mathcal{O}_Z}$	\mathcal{D} -Hilbert polynomial $P_{\mathcal{O}_{J_X^\infty E} / \mathcal{I}_{Z^\infty}}$
<i>Graded ring</i>	$R_* = \bigoplus_t \Gamma(X, \mathcal{O}_X(t))$	$\mathcal{O}_{T^*(X; Z^\infty)}(*) = \bigoplus_t \mathcal{O}_{T^*(X; Z^\infty)}(t)$
<i>Sheaves</i>	$\mathcal{F} \in \text{Coh}(X)$	$\Omega_{Z^\infty}^1 \in \text{Mod}(\mathcal{O}_{Z^\infty} \otimes_{\mathcal{O}_X} \mathcal{D}_X)$
<i>Graded module</i>	$M_* \in \text{Mod}^{gr}(R_*)$	$\text{Gr}(\Omega_{Z^\infty}^1) \in \text{Mod}^{gr}(\mathcal{O}_{T^*(X; Z^\infty)})$
<i>Sheaf theoretic</i>	Support	Microsupport (characteristic variety)
<i>Boundedness</i>	Castelnuovo-Mumford regularity	Degree of involutivity
<i>Moduli</i>	Hilbert scheme Hilb_X	\mathcal{D} -Hilbert scheme $\mathbf{Hilb}_{\mathcal{D}}^P$

*Establishes a new connection between differential-algebraic constraints and moduli-theoretic invariants

Summary by analogy

Comparing with Algebraic Geometry \Rightarrow numerical classification of \mathcal{D} -finitely generated ideals associated with differentially consistent systems

Concept	Algebraic Geometry	\mathcal{D} -Geometry
<i>Sheaf</i>	Algebraic ideal $\mathcal{I}_Z \subset \mathcal{O}_X$	\mathcal{D} -ideal $\mathcal{I}_{Z^\infty} \subset \mathcal{A}^\ell$
<i>Geometric</i>	Sub-scheme Z	\mathcal{D} -subscheme $Z^\infty \hookrightarrow J_X^\infty E$
<i>Numerical</i>	Hilbert polynomial $P_{\mathcal{O}_Z}$	\mathcal{D} -Hilbert polynomial $P_{\mathcal{O}_{J_X^\infty E} / \mathcal{I}_{Z^\infty}}$
<i>Graded ring</i>	$R_* = \bigoplus_t \Gamma(X, \mathcal{O}_X(t))$	$\mathcal{O}_{T^*(X; Z^\infty)}(*) = \bigoplus_t \mathcal{O}_{T^*(X; Z^\infty)}(t)$
<i>Sheaves</i>	$\mathcal{F} \in \text{Coh}(X)$	$\Omega_{Z^\infty}^1 \in \text{Mod}(\mathcal{O}_{Z^\infty} \otimes_{\mathcal{O}_X} \mathcal{D}_X)$
<i>Graded module</i>	$M_* \in \text{Mod}^{gr}(R_*)$	$\text{Gr}(\Omega_{Z^\infty}^1) \in \text{Mod}^{gr}(\mathcal{O}_{T^*(X; Z^\infty)})$
<i>Sheaf theoretic</i>	Support	Microsupport (characteristic variety)
<i>Boundedness</i>	Castelnuovo-Mumford regularity	Degree of involutivity
<i>Moduli</i>	Hilbert scheme Hilb_X	\mathcal{D} -Hilbert scheme $\mathbf{Hilb}_{\mathcal{D}}^P$

*Establishes a new connection between differential-algebraic constraints and moduli-theoretic invariants

The \mathcal{D} -Hilbert Functor

Recap so far

Introduced parameterizing space of isomorphism classes of exact sequences,

$$\mathcal{Q}uot(n, m, N, k) := \frac{\{\text{Sequences } (\mathcal{I}_{Z^\infty} \rightarrow \mathcal{O}_{J^\infty E} \rightarrow \mathcal{O}_{Z^\infty})\}}{\text{Isomorphism}} \quad (15)$$

Restrict:

$$\mathcal{Q}uot^{\text{inv}}(n, m, N, k) := \{[\mathcal{I}_{Z^\infty}] \in (15) \mid (\text{Spencer-regular}), \text{ integrable} \}. \quad (16)$$

Assigned numerical characterizations $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty}) \in \mathbb{Q}[z]$, tracking homological complexity of symbolic system.

Goal

Prove (16) defines a moduli functor.

Recap so far

Introduced parameterizing space of isomorphism classes of exact sequences,

$$\mathcal{Q}uot(n, m, N, k) := \frac{\{\text{Sequences } (\mathcal{I}_{Z^\infty} \rightarrow \mathcal{O}_{J^\infty E} \rightarrow \mathcal{O}_{Z^\infty})\}}{\text{Isomorphism}} \quad (15)$$

Restrict:

$$\mathcal{Q}uot^{\text{inv}}(n, m, N, k) := \{[\mathcal{I}_{Z^\infty}] \in (15) \mid (\text{Spencer-regular}), \text{ integrable} \}. \quad (16)$$

Assigned numerical characterizations $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty}) \in \mathbb{Q}[z]$, tracking homological complexity of symbolic system.

Goal

Prove (16) defines a moduli functor.

Recap so far

Introduced parameterizing space of isomorphism classes of exact sequences,

$$\mathcal{Q}uot(n, m, N, k) := \frac{\{\text{Sequences } (\mathcal{I}_{Z^\infty} \rightarrow \mathcal{O}_{J^\infty E} \rightarrow \mathcal{O}_{Z^\infty})\}}{\text{Isomorphism}} \quad (15)$$

Restrict:

$$\mathcal{Q}uot^{\text{inv}}(n, m, N, k) := \{[\mathcal{I}_{Z^\infty}] \in (15) \mid (\text{Spencer-regular}), \text{ integrable} \}. \quad (16)$$

Assigned numerical characterizations $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty}) \in \mathbb{Q}[z]$, tracking homological complexity of symbolic system.

Goal

Prove (16) defines a moduli functor.

Recap so far

Introduced parameterizing space of isomorphism classes of exact sequences,

$$\mathcal{Q}uot(n, m, N, k) := \frac{\{\text{Sequences } (\mathcal{I}_{Z^\infty} \rightarrow \mathcal{O}_{J^\infty E} \rightarrow \mathcal{O}_{Z^\infty})\}}{\text{Isomorphism}} \quad (15)$$

Restrict:

$$\mathcal{Q}uot^{\text{inv}}(n, m, N, k) := \{[\mathcal{I}_{Z^\infty}] \in (15) \mid (\text{Spencer-regular}), \text{ integrable} \}. \quad (16)$$

Assigned numerical characterizations $P_{\mathcal{D}}(\mathcal{O}_{Z^\infty}) \in \mathbb{Q}[z]$, tracking homological complexity of symbolic system.

Goal

Prove (16) defines a moduli functor.

The main result constructs the moduli functor and proves its representability.

Theorem (K-S, arXiv:2507.07937 (2025))

Let X be a smooth D -affine algebraic variety of dimension n . Let $m \in \mathbb{N}$ represent the number of dependent variables and fix $P \in \mathbb{Q}[t]$. Then there exists a moduli functor classifying formally integrable (non-singular) algebraic differential systems with specified (Spencer) regular symbolic behavior whose numerical polynomial P_D is equal to P :

$$\underline{\mathcal{Q}\text{uot}}_{\mathcal{D}_X}(P; n, m)^{\text{inv}} : \text{Sch}_X(\mathcal{D}_X)^{\text{op}} \rightarrow \text{Sets},$$

There exists a sub-functor consisting of Spencer semi-stable differential ideals representable by an (ind)-finite-type D -scheme.

The notion of \mathcal{D} -regularity and of the degree of involution behave appropriately with respect to sequences.

Proposition (K-S, arXiv:2507.07937 (2025))

If Z is Spencer m -regular, then it is Spencer m' -regular for all $m' \geq m$. Moreover, suppose there are smooth morphisms of \mathcal{D} -schemes $Z' \rightarrow Z \rightarrow Z''$, with \mathcal{D} -ideals $\mathcal{I}', \mathcal{I}, \mathcal{I}''$, respectively, inducing a short exact sequence of symbols. Suppose each \mathcal{D} -scheme is Spencer regular. The following statements hold:

- If Z' and Z'' are m -regular, then so is Z ;
- If Z' is $(m + 1)$ -regular and Z is m -regular then Z'' is $(m + 1)$ -regular;
- If Z is m -regular and Z'' is $(m - 1)$ -regular then Z' is m -regular.

- Analog of Mumford's boundedness criterion:

Proposition (K-S, arXiv:2507.07937 (2025))

Fix a numerical polynomial P . Consider a family $\{Z_i^\infty\}_{i \in I}$ of Spencer-regular algebraic PDEs. The following two statements are equivalent:

- The family is bounded;
- The set of \mathcal{D} Hilbert polynomials $\{P_{\mathcal{D}}(\mathcal{O}_{Z_i^\infty})\}$ is finite and there is a uniform bound on the involutivity degrees i.e. $\text{Reg}_{\mathcal{D}_X}(Z_i^\infty) \leq \rho, \forall i \in I$.

Namely, fixing an ambient \mathcal{D} -scheme Z (e.g. $J_X^\infty E$) and P , there exists some integer $\rho = \rho(P)$ such that for $Z_i^\infty \subset Z$ with \mathcal{D} -Hilbert polynomial $P_i = P$, its \mathcal{D} -ideal sheaf has \mathcal{D} -regularity ρ .

- Analog of Mumford's boundedness criterion:

Proposition (K-S, arXiv:2507.07937 (2025))

Fix a numerical polynomial P . Consider a family $\{Z_i^\infty\}_{i \in I}$ of Spencer-regular algebraic PDEs. The following two statements are equivalent:

- The family is bounded;
- The set of \mathcal{D} Hilbert polynomials $\{P_{\mathcal{D}}(\mathcal{O}_{Z_i^\infty})\}$ is finite and there is a uniform bound on the involutivity degrees i.e. $\text{Reg}_{\mathcal{D}_X}(Z_i^\infty) \leq \rho, \forall i \in I$.

Namely, fixing an ambient \mathcal{D} -scheme Z (e.g. $J_X^\infty E$) and P , there exists some integer $\rho = \rho(P)$ such that for $Z_i^\infty \subset Z$ with \mathcal{D} -Hilbert polynomial $P_i = P$, its \mathcal{D} -ideal sheaf has \mathcal{D} -regularity ρ .

- PDE Lefschetz hyperplane theorem:

Theorem (K-S, arXiv:2507.07937 (2025))

Let \mathcal{I}_{Z^∞} be a \mathcal{D} -involutive \mathcal{D} -ideal sheaf. For $j : H \subset T^*X$ a non-microcharacteristic analytic subset, denote by \mathcal{I}_H the \mathcal{D} -ideal obtain by non-characteristic restriction. Then $\text{Reg}_{\mathcal{D}}(\mathcal{I}_X) = m$ if and only if $\text{Reg}_{\mathcal{D}}(\mathcal{I}_H) = m$.

Spencer regularity is thus [preserved](#) under restriction to non-characteristic subvarieties. This allows us to control local-to-global properties of symbolic data.

- PDE Lefschetz hyperplane theorem:

Theorem (K-S, arXiv:2507.07937 (2025))

Let \mathcal{I}_{Z^∞} be a \mathcal{D} -involutive \mathcal{D} -ideal sheaf. For $j : H \subset T^*X$ a non-microcharacteristic analytic subset, denote by \mathcal{I}_H the \mathcal{D} -ideal obtain by non-characteristic restriction. Then $\text{Reg}_{\mathcal{D}}(\mathcal{I}_X) = m$ if and only if $\text{Reg}_{\mathcal{D}}(\mathcal{I}_H) = m$.

Spencer regularity is thus **preserved** under restriction to non-characteristic subvarieties. This allows us to control local-to-global properties of symbolic data.

A second result is the calculation of the Zariski tangent \mathcal{D} -module.

Theorem (Theorem (K-S, arXiv:2507.07937 (2025)))

The tangent space at a point $[\mathcal{I}]$ controlling first-order deformations of \mathcal{I} as a \mathcal{D} -ideal, is given by

$$T_{[\mathcal{I}]} \mathbf{Hilb}_{\mathcal{D}_X}(J_X^\infty E) \simeq \text{Hom}_{\mathcal{D}_X}(\mathcal{I}, \mathcal{O}(J_X^\infty E)/\mathcal{I}).$$

There is a space of obstructions $\text{Obs}_{[\mathcal{I}]}$ which is a filtered \mathcal{D} -module over the \mathcal{D} -scheme defined by \mathcal{I} whose associated graded algebra is isomorphic to a sub-quotient of the Ext^1 group giving the (truncated) Spencer cohomology determined by the symbol of \mathcal{I} .

GIT Quotients and Moduli of Spencer stable modules

One can prove a moduli space of Spencer stable finitely presented modules (PDE analog of moduli of coherent sheaves).

There exists a locus: $\mathcal{Q}uot_{\mathcal{D}}^{Sp-ss,inv} \subset \mathcal{Q}uot_{\mathcal{D}}^{inv}$, and for algebraic pseudogroups G acting on points of $\mathcal{Q}uot_{\mathcal{D}}^{inv}(P, n, m)$, we describe the invariant quotient:

$$\mathcal{Q}uot_{\mathcal{D}}^{Sp-ss,inv}(P, n, m) // \mathcal{G}.$$

With \mathcal{G} an **Algebraic Lie pseudogroup**: a family of algebraic sub-groups $\{G^k\}$ of k -jets of bundle isomorphisms ϕ acting on E (covering diffeomorphisms $\underline{\phi}$ of X).

Actions lift to k -jet spaces: $\phi^{(k)} : J_X^k E \rightarrow J_X^k E$, $[s]_x^k \mapsto [\phi \circ s \circ \underline{\phi}^{-1}]_{\phi(x)}^k$, functorially in E, X and jet-order, and restrict to PDEs $Z_k \subset J_X^k E$:

$$\begin{array}{ccc} E & \xrightarrow{\phi} & F \\ \downarrow \pi & & \downarrow \eta \\ X & \xrightarrow{\underline{\phi}} & Y \end{array} \quad \Rightarrow \quad \begin{array}{ccc} J_X^k E & \xrightarrow{\phi^{(k)}} & J_Y^k F \\ \downarrow & & \downarrow \\ J_X^\ell E & \xrightarrow{\phi^{(\ell)}} & J_Y^\ell F \end{array}$$

We care about $X = Y$.

We describe the moduli space as a type of PDE-theoretic GIT-quotient.

- \mathcal{D} -geometric Luna slice theorem:

Theorem (K-S, arXiv:2507.07937 (2025))

Given an algebraic action by a (formally integrable) Lie pseudogroup $G := \{G^k\}_{k \geq 0}$, on a \mathcal{D} -scheme with ideal \mathcal{I} , the quotient equation exists and is again an algebraic \mathcal{D} -scheme, with ideal \mathcal{I}^G . In particular, the (categorical) quotient \mathcal{D} -scheme $[Z/G] := \{[Z^k/G^k]\}_{k \geq 0}$, corresponds to a geometric quotient.

Importantly, its numerical characterization behaves well (e.g. polynomially) and its symbolic complexity is controlled (e.g. bounded).

We describe the moduli space as a type of PDE-theoretic GIT-quotient.

- \mathcal{D} -geometric Luna slice theorem:

Theorem (K-S, arXiv:2507.07937 (2025))

Given an algebraic action by a (formally integrable) Lie pseudogroup $G := \{G^k\}_{k \geq 0}$, on a \mathcal{D} -scheme with ideal \mathcal{I} , the quotient equation exists and is again an algebraic \mathcal{D} -scheme, with ideal \mathcal{I}^G . In particular, the (categorical) quotient \mathcal{D} -scheme $[Z/G] := \{[Z^k/G^k]\}_{k \geq 0}$, corresponds to a geometric quotient.

Importantly, its numerical characterization behaves well (e.g. polynomially) and its symbolic complexity is controlled (e.g. bounded).

Application of Spencer-stability to Non-abelian Hodge and DUY theorems

Solutions to **Differential Geometric** extremal problems correspond to Algebro-Geometric stability questions.

Theorem (Donaldson '85, Uhlenbeck-Yau '85)

Let (X, ω) be a compact Kähler manifold. A holomorphic vector bundle $E \rightarrow (X, \omega)$ **admits a Hermitian-Einstein metric** if and only if it is slope polystable.

Interpretation: *Existence of PDE solutions \rightsquigarrow Stability.*

Automorphisms: Stability $\Rightarrow \text{End}(E) = \mathbb{C} \cdot \text{id.}$

Remark

Many challenging and interesting open conjectures (e.g. Thomas-Yau, Yau-Tian-Donaldson, higher rank cases, hypercritical phases, relations to HMS).

T. Bridgeland, *Ann. of Math.* 166 (2007) 317–345

Solutions to **Differential Geometric** extremal problems correspond to Algebro-Geometric stability questions.

Theorem (Donaldson '85, Uhlenbeck-Yau '85)

Let (X, ω) be a compact Kähler manifold. A holomorphic vector bundle $E \rightarrow (X, \omega)$ **admits a Hermitian-Einstein metric** if and only if it is slope polystable.

Interpretation: *Existence of PDE solutions \rightsquigarrow Stability.*

Automorphisms: Stability $\Rightarrow \text{End}(E) = \mathbb{C} \cdot \text{id.}$

Remark

Many challenging and interesting open conjectures (e.g. Thomas-Yau, Yau-Tian-Donaldson, higher rank cases, hypercritical phases, relations to HMS).

T. Bridgeland, *Ann. of Math.* 166 (2007) 317–345

Solutions to **Differential Geometric** extremal problems correspond to Algebro-Geometric stability questions.

Theorem (Donaldson '85, Uhlenbeck-Yau '85)

Let (X, ω) be a compact Kähler manifold. A holomorphic vector bundle $E \rightarrow (X, \omega)$ **admits a Hermitian-Einstein metric** if and only if it is slope polystable.

Interpretation: *Existence of PDE solutions* \iff *Stability*.

Automorphisms: Stability \Rightarrow $\text{End}(E) = \mathbb{C} \cdot \text{id}$.

Remark

Many challenging and interesting open conjectures (e.g. Thomas-Yau, Yau-Tian-Donaldson, higher rank cases, hypercritical phases, relations to HMS).

T. Bridgeland, *Ann. of Math.* 166 (2007) 317–345

Solutions to **Differential Geometric** extremal problems correspond to Algebro-Geometric stability questions.

Theorem (Donaldson '85, Uhlenbeck-Yau '85)

*Let (X, ω) be a compact Kähler manifold. A holomorphic vector bundle $E \rightarrow (X, \omega)$ **admits a Hermitian-Einstein metric** if and only if it is slope polystable.*

Interpretation: *Existence of PDE solutions \iff Stability.*

Automorphisms: Stability $\Rightarrow \text{End}(E) = \mathbb{C} \cdot \text{id.}$

Remark

Many challenging and interesting open conjectures (e.g. Thomas-Yau, Yau-Tian-Donaldson, higher rank cases, hypercritical phases, relations to HMS).

T. Bridgeland, *Ann. of Math.* 166 (2007) 317–345

Solutions to **Differential Geometric** extremal problems correspond to Algebro-Geometric stability questions.

Theorem (Donaldson '85, Uhlenbeck-Yau '85)

Let (X, ω) be a compact Kähler manifold. A holomorphic vector bundle $E \rightarrow (X, \omega)$ **admits a Hermitian-Einstein metric** if and only if it is slope polystable.

Interpretation: *Existence of PDE solutions* \iff *Stability*.

Automorphisms: Stability $\Rightarrow \text{End}(E) = \mathbb{C} \cdot \text{id.}$

Remark

Many challenging and interesting open conjectures (e.g. Thomas-Yau, Yau-Tian-Donaldson, higher rank cases, hypercritical phases, relations to HMS).

T. Bridgeland, *Ann. of Math.* 166 (2007) 317–345

Solutions to **Differential Geometric** extremal problems correspond to Algebro-Geometric stability questions.

Theorem (Donaldson '85, Uhlenbeck-Yau '85)

Let (X, ω) be a compact Kähler manifold. A holomorphic vector bundle $E \rightarrow (X, \omega)$ **admits a Hermitian-Einstein metric** if and only if it is slope polystable.

Interpretation: *Existence of PDE solutions* \iff *Stability*.

Automorphisms: Stability $\Rightarrow \text{End}(E) = \mathbb{C} \cdot \text{id.}$

Remark

Many challenging and interesting open conjectures (e.g. Thomas-Yau, Yau-Tian-Donaldson, higher rank cases, hypercritical phases, relations to HMS).

T. Bridgeland, *Ann. of Math.* 166 (2007) 317–345

The connection to stability questions we focus on arises from the *Non-Abelian Hodge Correspondence*.

Theorem (Corlette, Simpson)

Let X be smooth projective and let (V, ∇) be a complex local system with reductive monodromy. Let (E, θ) be the associated polystable Higgs bundle. Then

$$H^*(X, (V, \nabla)) \cong H^*(X, (E, \theta)).$$

Recall: A Higgs bundle (E, θ) of rank m is $\mathcal{O}_X(1)$ -stable (resp. semistable) if for all θ invariant subsheaves $F \subset E$,

$$p(F) < p(E), \quad (\text{resp. } p(F) \leq p(E)),$$

where $p(F) := \chi(X; F \otimes \mathcal{O}_X(m)) / \text{rk}(F)$, is the reduced Hilbert polynomial of F .

Remarks

Remark. The Spencer-type polynomial stability encodes and generalizes well-known sheaf-theoretic stability conditions.

Moduli Space	Stability / Boundedness Condition
Moduli of coherent sheaves	Gieseker/slope stability
Hilbert/Quot moduli functors	Castelnuovo–Mumford regularity
Moduli of relative local systems	Semisimplicity / reductivity
Moduli of Higgs bundles	Slope (poly)stability
\mathcal{D} -Hilbert functor	Spencer stability

Works for non-linear PDEs on vector bundles, coherent sheaves, complexes, objects $\mathbf{D}^b(X)$, objects with stacky/derived structure etc.

Observation

Spencer-stability of PDEs imposed on *bundles* $\xrightarrow{\text{Formal solutions}}$ Sheaf-stability of bundles/sheaves.

Application: Equation of flat connections

Let (X, ω) be a compact Kähler manifold and (E, ∇) a holomorphic vector bundle of rank m with a flat connection $\nabla : E \rightarrow E \otimes \Omega_X^1$. Consider the Atiyah algebroid of E :

$$0 \longrightarrow \text{End}(E) \longrightarrow \text{At}(E) \longrightarrow T_X \longrightarrow 0,$$

where $\text{At}(E)$ consists of first-order differential operators on E with symbol in T_X . Dually, consider $J_X^1 E$ the first jet bundle of E , and $J_E^\infty J_X^1 E$ its infinite jet bundle. The flatness of ∇ is encoded by a differential ideal

$$\mathcal{I}_\nabla \subset \mathcal{A} := \mathcal{O}(J_E^\infty J_X^1 E)$$

generated by the differential equations defining the curvature. Denote

$$\mathcal{B}_\nabla := \mathcal{A}/\mathcal{I}_\nabla,$$

the \mathcal{D}_X -algebra of functions. The tangent space to the \mathcal{D} -Hilbert functor at $[\mathcal{I}_\nabla]$ is

$$T_{[\mathcal{I}_\nabla]} \text{Hilb}_{\mathcal{D}}(\mathcal{A}) \simeq \text{Hom}_{\mathcal{A}[\mathcal{D}_X]}(\mathcal{I}_\nabla, \mathcal{B}_\nabla).$$

Consider the associated graded of the jet filtration on \mathcal{I}_∇ :

$$\text{gr}(\mathcal{I}_\nabla) = \bigoplus_{k \geq 0} F^k \mathcal{I}_\nabla / F^{k+1} \mathcal{I}_\nabla,$$

where $F^k \mathcal{I}_\nabla$ is the k -th jet order.

Then, the Spencer cohomology computes

$$\mathcal{H}_{\text{Sp}}^{p,q}(\text{gr}(\mathcal{I}_\nabla)) \simeq H^q(X, \Omega_X^p \otimes \text{End}(E)).$$

There is a *stability-type* correspondence providing a purely PDE analog of DUY and NAH theorems.

Theorem ((K-S, 2025)

Let (X, ω) be a compact Kähler manifold. Then a holomorphic vector bundle E admits a Hermitian-Yang-Mills metric if and only if the associated flat connection ∇ defines a Spencer-polystable differential ideal $\mathcal{I}_{(E, \nabla)}$.

The canonical ideal $\mathcal{I}_{(E, \nabla)}$, corresponds to the *equation of flat connections*.

It encodes the infinitesimal geometry of flat bundles.

Connections on E are identified with sections of the affine bundle $\pi_{1,0} : J^1(E) \longrightarrow E$. Put $D(\Omega_E^p)$ the module of Ω_E^p -valued derivations.

Connection form and Frölicher–Nijenhuis bracket

A section ∇ of this bundle determines a decomposition $d = \bar{U}_\nabla + U_\nabla$, where $\bar{U}_\nabla \in D(\Omega_E^1)$ is defined by

$$X(\bar{U}_\nabla(f)) := (\nabla X_M)(f), \quad X \in D(E), f \in C^\infty(E),$$

and $U_\nabla := d - \bar{U}_\nabla$ is the vertical connection form.

$$[\cdot, \cdot] : D(\Omega_E^p) \times D(\Omega_E^q) \longrightarrow D(\Omega_E^{p+q})$$

extends the Lie bracket of vector fields: ∇ flat $\iff [\bar{U}_\nabla, \bar{U}_\nabla] = 0$.

Intrinsic definition

The *equation of flat connections* is the submanifold

$$Z_{\text{flat}} := \left\{ \theta_1 \in J^1(E) \mid [\bar{U}_\nabla, \bar{U}_\nabla]_{\pi_{1,0}(\theta_1)} = 0 \right\},$$

where $\theta_1 = [\nabla]_\theta^1$ is the 1-jet of any local representative connection ∇ .

- The value of $[\bar{U}_\nabla, \bar{U}_\nabla]$ at θ depends *only* on $\theta_1 \in J^1(E)$, *not* on the choice of ∇ .

$$\left\{ \begin{array}{l} \text{Spencer-polystable differential ideals} \\ \mathcal{J} \subsetneq \mathcal{I}^\nabla \\ P_{\mathcal{D}}(\mathcal{O}_S) \leq P_{\mathcal{D}}(Z_\nabla) \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \theta\text{-invariant polystable subbundles} \\ F \subsetneq (E, \theta) \\ p(F) \leq p(E) \end{array} \right\}.$$

Example: *D-stable sub-diffieties* \leftrightarrow *θ -invariant sub-Higgs bundles*.

Caution: this is *not* an equivalence of moduli spaces.

Important observation

These constructions can be extended:

$$E \rightsquigarrow E^\bullet := [\dots E^i \xrightarrow{d} E^{i+1} \xrightarrow{d} \dots],$$

from bundles E to complexes E^\bullet or more general objects of the derived category $\mathbf{D}^b(X)$.

Spencer-stability as PDE-stability provides a criteria for *existence of metrics* on these objects!

$$\left\{ \begin{array}{l} \text{Spencer-polystable differential ideals} \\ \mathcal{J} \subsetneq \mathcal{I}^\nabla \\ P_{\mathcal{D}}(\mathcal{O}_S) \leq P_{\mathcal{D}}(Z_\nabla) \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \theta\text{-invariant polystable subbundles} \\ F \subsetneq (E, \theta) \\ p(F) \leq p(E) \end{array} \right\}.$$

Example: *D-stable sub-diffieties* \leftrightarrow *θ -invariant sub-Higgs bundles*.

Caution: this is *not* an equivalence of moduli spaces.

Important observation

These constructions can be extended:

$$E \rightsquigarrow E^\bullet := [\dots E^i \xrightarrow{d} E^{i+1} \xrightarrow{d} \dots],$$

from bundles E to complexes E^\bullet or more general objects of the derived category $\mathbf{D}^b(X)$.

Spencer-stability as PDE-stability provides a criteria for *existence of metrics* on these objects!

$$\left\{ \begin{array}{l} \text{Spencer-polystable differential ideals} \\ \mathcal{J} \subsetneq \mathcal{I}^\nabla \\ P_{\mathcal{D}}(\mathcal{O}_S) \leq P_{\mathcal{D}}(Z_\nabla) \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \theta\text{-invariant polystable subbundles} \\ F \subsetneq (E, \theta) \\ p(F) \leq p(E) \end{array} \right\}.$$

Example: *D-stable sub-diffieties* \leftrightarrow *θ -invariant sub-Higgs bundles*.

Caution: this is *not* an equivalence of moduli spaces.

Important observation

These constructions can be extended:

$$E \rightsquigarrow E^\bullet := [\dots E^i \xrightarrow{d} E^{i+1} \xrightarrow{d} \dots],$$

from bundles E to complexes E^\bullet or more general objects of the derived category $\mathbf{D}^b(X)$.

Spencer-stability as PDE-stability provides a criteria for **existence of metrics** on these objects!

\mathcal{D} -Quot DG-Scheme

Natural to ask:

Question

Is there a derived enhancement $\mathbb{R}\mathcal{Q}uot_{\mathcal{D}_X}$? Is it representable?

Use a natural derived enhancement to \mathcal{D} -geometry:

Algebraic \mathcal{D} -Geometry \rightsquigarrow Derived \mathcal{D} -Geometry

$\text{Sch}_X(\mathcal{D}_X) \subset \text{Fun}(\text{CAlg}_X(\mathcal{D}_X)^{op}, \text{SETS}) \rightsquigarrow \text{dStk}_X(\mathcal{D}_X) \subset \text{dPStk}_X(\mathcal{D}_X)$.

In a paraphrased form the main result of Part II [KSh2]

Theorem (K-S, arXiv:2411.02387, (2025))

Consider **Theorem 1**. It has a natural derived enhancement given by the \mathcal{D} -Quot functor $\mathbf{Quot}_{\mathcal{D}_X, Z}$. It is a \mathcal{D} -simplicial presheaf (satisfying descent) which is moreover representable by a dg- \mathcal{D} -manifold of \mathcal{D} -finite presentation.

Realizes an underlying classical finite-type \mathcal{D} -scheme as the classical truncation of a dg- \mathcal{D} -manifold obtained as a simplicial diagram of dg-schemes modulo actions of Lie pseudogroups (the \mathcal{D} -Quot dg-manifold).

Natural to ask:

Question

Is there a derived enhancement $\mathbb{R}\mathcal{Q}uot_{\mathcal{D}_X}$? Is it representable?

Use a natural derived enhancement to \mathcal{D} -geometry:

Algebraic \mathcal{D} -Geometry \leadsto Derived \mathcal{D} -Geometry

$\text{Sch}_X(\mathcal{D}_X) \subset \text{Fun}(\text{CAlg}_X(\mathcal{D}_X)^{op}, \text{SETS}) \leadsto \text{dStk}_X(\mathcal{D}_X) \subset \text{dPStk}_X(\mathcal{D}_X)$.

In a paraphrased form the main result of Part II [KSh2]

Theorem (K-S, arXiv:2411.02387, (2025))

Consider **Theorem 1**. It has a natural derived enhancement given by the \mathcal{D} -Quot functor $\mathcal{Q}uot_{\mathcal{D}_X, Z}$. It is a \mathcal{D} -simplicial presheaf (satisfying descent) which is moreover representable by a dg- \mathcal{D} -manifold of \mathcal{D} -finite presentation.

Realizes an underlying classical finite-type \mathcal{D} -scheme as the classical truncation of a dg- \mathcal{D} -manifold obtained as a simplicial diagram of dg-schemes modulo actions of Lie pseudogroups (the \mathcal{D} -Quot dg-manifold).

Natural to ask:

Question

Is there a derived enhancement $\mathbb{R}\mathcal{Q}uot_{\mathcal{D}_X}$? Is it representable?

Use a natural derived enhancement to \mathcal{D} -geometry:

Algebraic \mathcal{D} -Geometry \leadsto Derived \mathcal{D} -Geometry

$$\text{Sch}_X(\mathcal{D}_X) \subset \text{Fun}(\text{CAlg}_X(\mathcal{D}_X)^{op}, \text{SETS}) \leadsto \mathbf{dStk}_X(\mathcal{D}_X) \subset \mathbf{dPStk}_X(\mathcal{D}_X).$$

In a paraphrased form the main result of Part II [KSh2]

Theorem (K-S, arXiv:2411.02387, (2025))

Consider **Theorem 1**. It has a natural derived enhancement given by the \mathcal{D} -Quot functor $\mathbf{Quot}_{\mathcal{D}_X, Z}$. It is a \mathcal{D} -simplicial presheaf (satisfying descent) which is moreover representable by a dg- \mathcal{D} -manifold of \mathcal{D} -finite presentation.

Realizes an underlying classical finite-type \mathcal{D} -scheme as the classical truncation of a dg- \mathcal{D} -manifold obtained as a simplicial diagram of dg-schemes modulo actions of Lie pseudogroups (the \mathcal{D} -Quot dg-manifold).

Natural to ask:

Question

Is there a derived enhancement $\mathbb{R}\mathcal{Q}uot_{\mathcal{D}_X}$? Is it representable?

Use a natural derived enhancement to \mathcal{D} -geometry:

Algebraic \mathcal{D} -Geometry \leadsto Derived \mathcal{D} -Geometry

$$\text{Sch}_X(\mathcal{D}_X) \subset \text{Fun}(\text{CAlg}_X(\mathcal{D}_X)^{op}, \text{SETS}) \leadsto \mathbf{dStk}_X(\mathcal{D}_X) \subset \mathbf{dPStk}_X(\mathcal{D}_X).$$

In a paraphrased form the main result of Part II [KSh2]

Theorem (K-S, arXiv:2411.02387, (2025))

Consider **Theorem 1**. It has a natural derived enhancement given by the \mathcal{D} -Quot functor $\mathbf{Quot}_{\mathcal{D}_X, Z}$. It is a \mathcal{D} -simplicial presheaf (satisfying descent) which is moreover representable by a dg- \mathcal{D} -manifold of \mathcal{D} -finite presentation.

Realizes an underlying classical finite-type \mathcal{D} -scheme as the classical truncation of a dg- \mathcal{D} -manifold obtained as a simplicial diagram of dg-schemes modulo actions of Lie pseudogroups (the \mathcal{D} -Quot dg-manifold).

Solve the derived moduli problem: selecting $m_0 \in \mathbb{N}$ large enough to ensure involutivity of \mathcal{Y} , we want to classify A_∞ -submodules in a certain category of \mathcal{D}_X -modules, of the form

$$\mathcal{N}_{\geq m_0} \hookrightarrow \mathcal{C}h_{\geq m_0}, \text{ with } \dim(\mathcal{N}_k) = \mathbf{h}^{\mathcal{D}}(k), \forall k \geq m_0.$$

Rmk. Having a (graded) submodule $\mathcal{N}_{a,t} \hookrightarrow \mathcal{C}h$ is expressed via algebra relations on a product,

$$\text{Gr}_{[a,t]} := \prod_{a \leq s \leq t} \text{Gr}(\dim(\mathcal{N}_s), \mathcal{C}h_s).$$

N.B! Since symbol/characteristic modules are finitely-cogenerated if the equation is involutive and formally integrable.

We may choose a basis in $\mathcal{N}_s \hookrightarrow \mathcal{C}h$, and this generates actions of Gl of rank $P(s)$ on \mathcal{N}_s .

Solve in a ‘stretch’ $[a, t]$: extend beyond via MC-equations.

Based on constructing a dg-Lie algebra object in \mathcal{D} -modules,

$$\mathfrak{g}_{\geq a; t}^n := \mathcal{P}_{[n] \sqcup *}^*(\{\mathcal{A}, \mathcal{N}_{\geq a}\}; \mathcal{N}_t) \oplus \mathcal{P}_{[n] \sqcup \{*\}}^*(\{\mathcal{A}, \mathcal{N}_{\geq a}\}; \mathcal{C}h_t),$$

then, roughly speaking, one proceeds as follows:

- Use **Koszul duality** \sim dg-commutative algebra object e.g. generated by $\mathfrak{g}^\circ[-1]$ leading to a (formal derived \mathcal{D} -stack)

$$\mathcal{Y}_{[a, a+2]} := \underline{\mathbf{Spec}}_{\mathcal{D}}(CE^{\bullet, \otimes^*}(\mathfrak{g}_{a, t}^\bullet[1])^\circ). \quad (17)$$

We end up with a sequence of formal derived \mathcal{D} -stacks,

$$\dots \rightarrow \mathcal{Y}_{[a, a+2]} \rightarrow \mathcal{Y}_{[a, a+1]} \rightarrow \mathcal{Y}_a, \quad (18)$$

- Look at the ‘injectivity’ locus (so sub-module structures, not just A_∞ -morphisms)
- Take a geometric quotient and computing a colimit (reduction to a \mathcal{D} -geometric Postnikov-type sequence).

Thank you for your attention!

References

- [BKS] **Borisov, D; Katzarkov, L; Sheshmani, A**: “Shifted symplectic structures on derived Quot-stacks I – Differential graded manifolds,” *Advances in Mathematics*, Vol. 403, 34 pages, (2022).
- [BKSY2] **Borisov, D; Katzarkov, L; Sheshmani, A; Yau, S-T**: “Shifted symplectic structures on derived Quot-stacks II–Derived Quot-schemes as dg manifolds,” *Advances in Mathematics*, Vol. 462, 10092, (2025)
- [CFK] Ciocan-Fontanine, I; Kapranov, M: “Derived Quot Schemes.” *Annales scientifiques de l’École normale supérieure*. Elsevier, VoL. 34, pp: 403–440, (2001).
- [CFK2] Ciocan-Fontanine, I; Kapranov, M: “Derived Hilbert Schemes.” *Journal of the American Mathematical Society*. 15(4):787– 815, (2002).
- [KS] Kashiwara, M; Schapira, P: “Sheaves on manifolds,” *Grundlehren der Mathematischen Wissenschaften*. 292, Springer-Verlag, (1990).
- [KSh] **Kryczka, J; Sheshmani, A**: “*The \mathcal{D} -Geometric Hilbert Scheme – Part I: Involutivity and Stability*” [arXiv:2507.07937](https://arxiv.org/abs/2507.07937), (2025).
- [KSh2] **Kryczka, J; Sheshmani, A**: “*The \mathcal{D} -Geometric Hilbert Scheme – Part II: Hilbert and Quot DG-Schemes.*” [arXiv:2411.02387](https://arxiv.org/abs/2411.02387), (2024).
- [KSY] **Kryczka, J; Sheshmani, A; Yau, S-T**: “*Derived Moduli Spaces of Nonlinear PDEs I: Singular Propagations*”, [arXiv:2312.05226](https://arxiv.org/abs/2312.05226), (2023).
- [KSY2] **Kryczka, J; Sheshmani, A; Yau, S-T**: “*Derived Moduli Spaces of Nonlinear PDEs II: Variational Tricomplex and BV Formalism*”, [arXiv:2406.16825](https://arxiv.org/abs/2406.16825), (2024).
- [Vin] Vinogradov, A: “*Category of Nonlinear Differential Equations*”, Lecture Notes Math., Vol. 1108, Springer-Verlag, Berlin, (1984), pp. 77-102.