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Introduction

Goal
Study global (virtual) geometry of (derived) enhancements of moduli spaces of
solutions to non-linear PDEs and their deformations (+ enumerative problems,
DT/GW/PT-theory, Mirror symmetry ...).

Based on arXiv:2507.07937 and arXiv:2411.02387 (with J.Kryczka) and
previous work with J. Kryczka-A.S and S-T.Yau:

• Derived Moduli of Solutions to (Nonlinear) PDEs: Part I [KSY] and Part
II [KSY2] (Kryczka-S-Yau)

• Hilbert and Quot Schemes for PDEs: Part I [KSh] and Part II [KSh2]
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Overview and strategy: PDE analogs of Hilb, Quot

The road-map:

• Analytic presentation F (x, u, ∂σ
x u) = 0,⇒ geometric object

Zk = {F = 0}.

• Obtain a stable object Z∞ via the formal theory of integrability.
Yields a differential ideal IZ∞ from a family of compatible finite-order
algebraic ideals {Ik : k ≥ 0}.

• Associated canonical algebraic structures - symbolic/characteristic
module M•.

• Geometric integrability conditions on Z∞ induce algebraic regularity
conditions on M• (realized via Koszul, Spencer complexes).

• Numerical polynomial PD(OZ∞ ), via these resolutions of M•.

• A space QuotP
D parameterizing sub-schemes Z∞ with M• of prescribed

regularity, induced by fixing P ∈ Q[t] and requiring PD = P.
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Systems of NLPDEs

A system of N differential equations for a vector-valued function
u = (u1, . . . , um) of variables x = (x1, . . . , xn) is:

Zk :=


F1(x, u, ∂u

∂x
, . . . , ∂ku

∂xk , . . . , ∂|σ|u
∂xσ

) = 0,

...
FN (x, u, ∂u

∂x
, . . . , ∂ku

∂xk , . . . , ∂|σ|u
∂xσ

) = 0.

(1)

Derivatives uα
σ := ∂|σ|uα

∂xσ
, for α = 1, . . . , m: multi-index notation

σ = (σ1, . . . σn) ∈ Nn with length |σ| := σ1 + · · ·+ σn ≤ k (order).

Simplifying assumption: The orders of each FA, A = 1, . . . , N are the same.

• Zk is the zero locus of (1) in k-jet space Jk
XE

dim = n + m

(
n + k

k

) ∋ (xi, uα, uα
σ) i.e.

OZk = OJk
X

E/Ik, with Ik = span{(1)}.

Remark 1. The structure sheaf OJk
X

(E) is the k’th-jet sheaf Jk(E∨).
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Reminder from Algebraic Geometry

First jets can be obtained by considering first order Nilpotent Thickening of
Diagonal. Given ∆ : X ↪→ X ×X consider the canonical short exact
sequence:

0→ I∆ → OX×X → ∆∗OX =: O∆ → 0 (2)

Thickening ∆ in X ×X we obtain

0→ I2
∆ → OX×X → O2∆ → 0 (3)

It is then seen that the following s.e.s. holds true:

0→ I/I2 → O2∆ → O∆ → 0 (4)

After projection via p : X ×X → X we obtain

0→ Ω1
X → p∗(O2∆) := J1(OX)→ OX → 0 (5)

Similarly, we can apply k-fold jet construction to a sheaf E∨ and obtain:

0→ SymkΩ1
X ⊗ E∨ → Jk

X(E∨)→ Jk−1
X (E∨)→ 0 (6)
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Context

The restriction SymkΩ1
X ⊗ E∨ |Zk is called order k Co-symbol of PDE Zk.

Differential operators P : E → F of order ≤ k between vector bundles (or coherent
sheaves) are equivalently OX -linear morphisms FP ,

P ∈ D≤k
X (E, F ) ≃ FP ∈ Hom(Jk

XE, F ), via P = FP ◦ jk.

Prolonged operators: F
(ℓ)
P : Jℓ+k

X E → Jℓ
XF, ℓ ≥ 0, via F

(ℓ)
P := Fjℓ◦P .

• Obtain Z∞ = ker(F (∞)
P ), by considering Zk := {FP = 0} together with all

differential consequences

Z∞ := Zk∪
⋃
ℓ≥0

Z
(ℓ)
k

≃ {DσFP = 0|σ multi-index |σ| ≥ 0(unbounded)}.

• O
Z

(ℓ)
k

= O
Jk+ℓ

X
E

/Ik+ℓ, with Ik+ℓ = {FP , DσFP : |σ| ≤ ℓ}.

Remark. Ideals IZ∞ are ‘differentially-generated’= algebraically generated by
Di(F )

Di := ∂

∂xi
+

m∑
α=1

∑
|σ|≥0

uα
σ+1i

∂

∂uα
σ

, (total derivative). (7)

Defines an integrable distribution C : ∂i 7→ Di (flat connection)
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What is a PDE?

Forgetting derivatives gives a jet-tower:

· · · → Jk+ℓ
X E

πk+ℓ
k+ℓ−1−−−−−→ Jk+ℓ−1

X E → · · · → Jk
XE → Jk−1

X E → · · · → E → X.

Considering Zk = {F (x, u(x), ∂σ
x u(x) = 0} ↪→ Jk

XE, two main operations:

• Projection: The r-fold projection, ρr(Zk) := πk
k−r(Zk) ⊆ Jk−r

X E.

• Prolongation: pr1(Zk) := J1
X(Zk)×J1

X
(Jk

X
E) Jk+1

X E,

Put pk := πl|Zk : Zk → X ⇒ Zk+r := prr(Zk) = Jr
X(pk) ∩ Jq+r

X E ⊆ Jq+r
X .

Remark 1. Neither ρr(Zk−r) nor Zk+r are smooth in general (not relevant
for us).

Remark 2. More simply ρkZk ⊆ Zk−1 and pr1(Zk) ⊇ Zk+1(not equality!).

Remark 3. They are not inverse operations: take Zk ⊂ Jk
XE prolong

Zk+r ⊆ Jk+r
X and project back to Jk

XE, we only get ρrZk ⊆ Zk (not
equality!).
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What is a PDE?

Ex. Zwave
0 := {F = u00 − cuii = 0} ↪→ J2

XE ≃ k[t, x1, . . . , xn, u, ui, uij ].

; Z(∞) = {uσ00 = cuσii, |σ| ≥ 0}.

Key point (Vinogradov’s Philosophy)
A PDE Z ↪→ Jk

XE should be understood in terms of its
infinite-prolongation Z(∞) as a sub-space of J∞

X E.

Since analytic presentations are just one representative, may lead to
ambiguities:

Ex. Z := {uxxu2
tt + u2

tx + (u2
x − ut)u = 0}, and

Z′ :=


ux = v,

ut = w,

vxw2
t + vtwx + (v2 − w)u = 0.

Equivalent, but can not be compared at face value (live in different jet-spaces;
Z ⊂ J2(E) with dim(E) = 3 and Z′ ⊂ J1(E′) with dim(E′) = 5.)
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What is a PDE?

Thus we can not compare intrinsic structure in a unified way between the
two presentations e.g. can not discuss symmetries, solutions, conservation
laws etc.

Assemble integrability conditions arising at finite jet/prolongation orders
into a single geometric object⇒ Algebraic D-schemes (stacks, higher stacks
etc.)
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Spencer (D-) Regularity

Infinite prolongations: a system of non-linear PDEs Z of k-th order is a
family of sub-schemes Zℓ ⊂ Jℓ

XE for all ℓ ∈ N where ℓ ≥ k. It is given as a
tower of surjective submersions with inverse limit Z∞ = lim−→Zℓ.

Prolongation ⇒ tower of schemes:

· · · → Zk+ℓ

pk+ℓ
k+ℓ−1−−−−−→ Zk+ℓ−1 → · · · → Zk+1

pk+1
k−−−→ Zk.

A priori unclear it stabilizes (addition of new equations and variables). An
analog of the Hilbert basis theorem is needed.

But, infinite prolongations Z∞ give D-schemes SpecD(OZ∞ ), determined
by D-ideals I e.g. OZ∞ = OJ∞

X
E/IZ∞ .

Stabilization (thus non-emptiness) is probed via Ritt’s analog of Hilbert
basis theorem for differential ideals (Ritt-Radenbush Theorem).
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Infinite prolongations: a system of non-linear PDEs Z of k-th order is a
family of sub-schemes Zℓ ⊂ Jℓ

XE for all ℓ ∈ N where ℓ ≥ k. It is given as a
tower of surjective submersions with inverse limit Z∞ = lim−→Zℓ.
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Spencer (D-) Regularity

We start with the differentially stable objects - it is convenient to single out
those which arise from the Cartan-Kuranishi prolongation process.

Definition
Let I be a D-ideal with corresponding closed D-subscheme Z∞ ⊂ J∞

X E. It is
Spencer r-regular if: (i) Zr, pr1(Zr) are (possibly singular) schemes and
pr1(Zr) → Zr is surjective, and (ii) for all ℓ ≥ 0 one has Zℓ+r = prℓ(Zr). A
D-scheme is Spencer regular if it is Spencer r-regular for some r ≥ 0.

Write RegD(Z) = r.

* Pictorially:
Z ← Z1 ← · · · ← Zr0 ↞ Zr0+1 ← · · ·,

highlighting the regular region, defined by all r ≥ r0 such that
Zr+1=pr1(Zr). Everywhere else, we ask that Zr+1 ⊆ pr1(Zr), for all r ≥ k.

Analytic category: There is a minimal r0 such that (ii) holds for all r ≥ r0.

(Cartan-Kuranishi Theorem)

Any algebraic analog of Spencer r-regularity?
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Intuition from Algebraic Geometry

Equation ideal I is stable under an action by DX (a D-ideal) and OZ∞ is an
algebra (also stable by D) e.g. OZ∞ ∈ CAlgX(DX).

• Grothendieck-style algebraic-geometry for PDEs - Algebraic D-Geometry:

0 → IZ∞ → OJ∞
X

E → OZ∞ → 0.

Concept Algebraic Geometry D-Geometry
Formula P (x) = 0 F (x, u, ∂σu) = 0

Algebraic structure Commutative k-algebra A Commutative D-algebra A
Free structure P ∈ k[x] F ∈ A := OJ∞

X
E

Solution space {x ∈ A|P (x) = 0} {a ∈ A|F (a) = 0}
Affine object Speck(A) SpecD(A)

Representability Solk(P = 0) ≃ Spec(A/P ) SolD(F = 0) ≃ SpecD(OJ∞
X

E/IZ∞ )

Question
Is there a moduli space of D-subschemes?
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Hilbert and Quot Schemes in Algebraic
Geometry



Hilbert Scheme

All schemes are locally Noetherian over an algebraically closed field k.

X/S is projective and O(1) a relatively ample line bundle. P is a fixed
numerical polynomial.

Recall: Hilbert functor HilbP (X/S) : Schop
/S
→ Sets, associates to an

S-scheme T , the set

{YT ⊂ X ×S T : for t ∈ T, YT |t = Y ⊂ X, P (OY ) = P}.

Theorem (Grothendieck)
The Hilbert functor is representable by a projective scheme.

Equiv. Quot
X/S

(F )(T ) := {coherent quotients q : FT ↠ G|G is T − flat}.

1. QuotP

X/S
(F ) ↪→ Quot

X/S
(F ), with G ∼ G′ if ker(q) = ker(q′).

2. QuotP

X/S
(OX) = HilbP

X/S(X).
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Finiteness

Fixing P induces a regularity condition on the quotient sheaf G.

Fact: By restricting to structure sheaves of subschemes with a fixed P , we
can find an integer m depending only on P that works simultaneously for
the structure sheaf of every subscheme with Hilbert polynomial equal to P

(uniform bound).

Definition
A coherent sheaf F ∈ Coh(X) is Castelnuovo-Mumford m-regular if
Hi(X, F (m− i)) = 0, i > 0.

This leads to an embedding of the Quot scheme into a suitable Grassmann
variety.

There is a more general notion of Castelnuovo-Mumford regularity, with a
purely commutative algebraic description.
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Algebraic regularity: Koszul complex

Let V be an n-dimensional k-vector space.

•Koszul (degree k), Kk(V ):

0→ Sk−nV ⊗ ∧nV
∂−→ Sk−n+1V ⊗ ∧n−1V → · · · → SkV → 0,

∂(w ⊗ v1 ∧ . . . ∧ vq) =
q∑

i=1

(−1)i+1vi · w ⊗ v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vq.

•Polynomial de Rham (degree k) Rk(V ):

0→ SkV
δ−→ Sk−1V ⊗ V

δ−→ Sk−2V ⊗ ∧2V → · · · → Sk−nV ⊗ ∧nV → 0

δ(w1 · · ·wp ⊗ v) =
p∑

i=1

w1 · · ·wi−1wi · · ·wp ⊗ wi ∧ v.

Remark. ∂2 = 0, δ2 = 0, and R•(V )∨ ≃ K•(V ∨).
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Algebraic regularity

For a module M, over a polynomial ring, tensoring the Koszul sequence
gives K•(M) ≃ K•(V )⊗M.

If M is additionally graded, the Koszul complex is bi-graded:

Hp,q(K•(M)) := H
(
∧p+1 V ⊗Mq−1 → ∧pV ⊗Mq → ∧p−1V ⊗Mq+1).

The notion of regularity uses these spaces: M is r-regular if:
Hp,q

(
K•(M)

)
= 0, ∀p, q ≥ r.

Definition
The regularity of M is regCM (M) := inf

r
{Hp,q

(
K•(M)

)
= 0, ∀p, q ≥ r}.
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Algebraic D-Geometry of Non-linear
PDEs



The ‘Guiding Idea’

Geometric theory of PDEs is similar to ordinary algebraic geometry.

Algebraic Geometry: P1(x1, . . . , xN ) = 0, . . . , PN (x1, . . . , xn) = 0⇒ a geometric
object i.e. schemes over k-algebras:

Schk ⊂ Fun(CAlgop
k , Sets)

e.g.HilbP
X

,QuotP

⇝ S :


P1(x1, . . . , xn) = 0
...
PN (x1, . . . , xn) = 0

.

D-Geometry: F1(x, . . . , u[σ], . . .) = 0, . . . , FN (x, . . . , u[σ], . . .) = 0⇒ a geometric
object i.e. schemes over D-algebras:

SchX(D) ⊂ Fun(CAlgX(DX)op, Sets)
?HilbP

DX
,QuotP

DX
?

⇝ S :


F1(x, [u]) = 0
...
FN (x, [u]) = 0

.
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Basic idea

Define a set,

[IX ] ∈ QDX (n, m, N, k) ;

IZ∞ OJ∞
X

E OZ∞

IZ′
∞

OJ∞
X

E OZ′
∞

,

α

q

β

q′

where α, β are isomorphisms of DX -algebras.

Impose that the system {FA = 0 : A = 1, . . . , N}, or equivalently the ideal
IZ∞ satisfies

SolD(IZ∞ ) ̸= SpecD(OJ∞
X

E)︸ ︷︷ ︸
Non-trivial

, and SolD(IZ∞ ) ̸= ∅︸ ︷︷ ︸
Consistent

. (8)

Formal integrability is assumed - the ideals contain all possible integrability
conditions.

18



Our original question

Question
Is the space QDX of D-ideal sheaves representable?

What do we need?

• Identify numerical characterizations to parameterize our objects;

• Obtain ‘regularity’ compatible with cohomological vanishing

• Show uniform boundedness in flat families

Question
Is there a derived enhancement RQDX ?

Algebraic D-Geometry ; Derived D-Geometry

SchX(DX) ⊂ Fun(CAlgX(DX)op, Sets) ; dStkX(DX) ⊂ dPStkX(DX).

19



Symbolic Systems

Geometric symbols of (non-linear) PDEs admit a purely algebraic
description.

Let V, W be finite-dimensional vector spaces, dimV = n.

Consider Symk(V ∨)⊗W, k ≥ 0.

Let Nk ⊆ Symk(V ∨)⊗W be a vector subspace.

First-prolongation is pr1(Nk) := {P ∈ Symk+1(V ∨)⊗W |δ(P) ∈ Nk ⊗ V ∨}.

* Alternatively, pr1(Nk) := (V ⊗ Nk) ∩ (Symk+1(V ∨) ⊗ W ), taken in
V ∨ ⊗ (Symq(V ∨) ⊗ W ).

Definition
A sequence of vector sub-spaces {Nk ⊆ Symk(V ∨) ⊗ W }k∈Z+ is a symbolic
system if Nk+1 ⊆ pr1(Nk), k ∈ Z+.

Remark: prr+1(Nk) := pr1(prr(Nk)), r ∈ N or
prr(Nk) = (⊗r

i=1V ∨ ⊗Nk) ∩ (Symq+r(V ∨)⊗ E).

We can construct a graded module
M• := ⊕kNk ⇒ K•(M•)⇒ Hp,q

(
K•(M•)

)
.
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Involution

Roughly
An involutive non-linear PDE is one whose symbol module is regular.

The (geometric) symbol of an involutive non-linear PDE induces at each
point a polynomial (co)module - characteristic module.

Approach: Use Koszul homology or R-dual non-linear Spencer cohomology
to determine the length of finite resolutions (determine the regularity,
analogous to Castelnuovo-Mumford).

• Only looking at involutive PDEs is not a huge restriction - analytic
systems can always be made involutive (Cartan-Kuranishi Theorem).

• Most examples in Mathematical Physics are of this type e.g. Yang-Mills,
Einstein, Einstein-Maxwell, Higher p-form theories...
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Compatibility with ‘cohomological vanishing’

Involutivity and the degree of involution correspond to a certain
cohomological vanishing criteria (Cartan, Goldschmidt and Spencer)

Spencer cohomology ∼ Sheaf cohomology for PDEs (the sheaf is the
solution sheaf).

Spencer δ-cohomology ∼ Cohomology of graded polynomial de Rham
complex for symbolic systems N = {Nk+r : r ≥ 0}.
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Spencer Cohomology I

Observation: for each k ≥ 1, we have

0→ Symk(Ω1
X)⊗ E︸ ︷︷ ︸

(co)symbols live here

→ Jk
XE

πk
k−1−−−→ Jk−1

X E → 0.

The isomorphism is:

Symk(Ω1
X)⊗ E

≃−→ Ker(Jk
XE → Jk−1

X E), (9)

defined by df1 · · · dfk ⊗ e 7→ δf1,··· ,fk (jk)(e), e ∈ E, where
δf1,··· ,fk := δf1 ◦ · · · δfk , is the nested commutator, where δfi := [fi,−].

Cosymbol Nk of Zk is:

0→ Nk → Jk
XE|Zk → Jk−1

X E|Zk−1 → 0.
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Spencer cohomology

Given a coherent sheaf E on X, the k-th Jet-Spencer complex of E is,

JkSp•
X(E) := 0→ E

jk−→ Jk
XE

S−→ Ω1
X ⊗OX Jk−1

X E
S−→ · · · , (10)

with S(ω ⊗ jk(e)) := dω ⊗ jk−1(e). Projection Jk
XE → Jk−1

X E induces a
morphism of complexes:

0 E Jk
XE Ω1

X ⊗OX Jk−1
X E ∧2Ω1

X ⊗OX Jk−2
X E → · · ·

0 E Jk−1
X E Ω1

X ⊗OX Jk−2
X E ∧2Ω1

X ⊗OX Jk−3
X E → · · ·

For each k ≥ 1 kernel of Jet-Spencer complexes:
Definition
The δ-Spencer complex of E (of degree k) is,

0 → Sk(Ω1
X)⊗OX

E
δ−→ Ω1

X⊗OX
Sk−1(Ω1

X)⊗OX
E

δ−→ Ω2
X⊗OX

Sk−2(Ω1
X)⊗OX

E · · ·

It is a complex of OX -modules with differential
δ : (ω ⊗ u⊗ e) 7→ (−1)|ω|ω ∧ i(u)⊗ e, with i : Sk−rΩ1

X ↪→ Ω1
X ⊗ Sk−r−1Ω1

X . 24
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In local charts

Restricting to Zk, we obtain δ-Spencer complexes for cosymbols Nk.

Consider ιk : Zk = {F (x, u, u[σ]) = 0} ↪→ Jk
X(E) :

TθJk
XE = span

{
v := ẋi ∂

∂xi
+ u̇α

σ
∂

∂uα
σ

}
, and TθZk = {v ∈ TθJk

XE|T F (v) = 0}.

A linear system for the coefficients of v:
n∑

i=1

∂F

∂xi
(θ) · xi +

∑
1≤α≤m,1≤σ≤ord(F )

∂F

∂uα
σ

(θ)u̇α
σ = 0.

The geometric symbol Nk, of Zk is the family of vector spaces:

(Nk)z := TzZk ∩ T
Jk

X
E/Jk−1

X
E,z
≃ Tπk

k−1|Zk
, (relative tangents).

Coordinates
For Zk = {F = 0}, then Nk =

∑
1≤α≤m,|σ|=ord(F )

∂F
∂uα

σ
(θ)u̇α

σ = 0.
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σ = 0.
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In local charts

Restricting to Zk, we obtain δ-Spencer complexes for cosymbols Nk.

Consider ιk : Zk = {F (x, u, u[σ]) = 0} ↪→ Jk
X(E) :

TθJk
XE = span

{
v := ẋi ∂

∂xi
+ u̇α

σ
∂

∂uα
σ

}
, and TθZk = {v ∈ TθJk

XE|T F (v) = 0}.

A linear system for the coefficients of v:
n∑

i=1

∂F

∂xi
(θ) · xi +

∑
1≤α≤m,1≤σ≤ord(F )

∂F

∂uα
σ

(θ)u̇α
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Symbols and Characteristic Modules, Algebro-geometrically

Consider relative differentials of dg of holomorphic functions g ∈ OJℓ
X

E i.e.
d(g) ∈ Ω1

Jℓ
X

E/Jℓ−1
X

E
≃ OJℓ

X
E [ξ1, . . . , ξn]k, with (x; ξ) ∈ T ∗X.

Put OZr = OJr
X

E/Ir.

Order r symbol: Nr ⊂ ⊕αOZr [ξ1, . . . , ξn]rd(uα), generated by classes dF

mod Ir of F ∈ Ir.

Symbol: the associated graded module generated by Nr.

Characteristic module: graded quotient M :=
⊕

r
OZr [ξ1, . . . , ξn]/Nr.

∗ Alternatively, look at conormal Ir/I2
r of Zr, as sub-sheaf of Ω1

Jr
X

E ⊗OZr .

Then,
Mr ≃ Ω1

Zr/Zr−1 .

From Z∞ ⇒ F rZ := Zr ⊂ Jr
X(E),

OF rZ ⊗O
F r−1Z

Ω1
F r−1Z/X

→ Ω1
F rZ/X → Ω1

F rZ/F r−1Z
→ 0. (11)

Applying OZ∞ ⊗O(F rZ) (−):

OZ∞ ⊗O
F r−1Z

Ω1
F r−1Z/X

→ OZ∞ ⊗OF rZ
Ω1

F rZ/X → OZ∞ ⊗OF rZ
Ω1

F rZ/F r−1Z
→ 0.
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δ-Spencer complex of Z: Full package

In more generality:

Consider a family of prolonged operators:
{

F
(ℓ)
P : Jk+ℓ

X E → Jℓ
XF}ℓ≥0.

There is an induced family of (prolonged) symbol maps:

σℓ,k(FP ) : Symk+ℓ
OX

(Ω1
X)⊗OX E → Symℓ

OX
(Ω1

X)⊗ F. (12)

A family of symbolic modules:
{
N k+ℓ := ker

(
σℓ,k(FP )

)
}ℓ≥0

The Spencer δ-complex:

0→ N k+ℓ δ−→ Ω1
X ⊗N k+ℓ−1 → Ω2

X ⊗N k+ℓ−2 → · · ·

Cohomologies are denoted Hk+ℓ,i
δ (FP ).
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Summary

The situation is summarize by the commuting diagram,

0 0 0

0 N (r) N (r−1) ⊗ Ω1
X · · · N (r−n) ⊗ Ωn

X → 0

0 prrZ prr−1Z ⊗ Ω1
X · · · prr−nZ ⊗ Ωn

X → 0

0 prr−1Z prr−2Z ⊗ Ω1
X · · · prr−n−1Z ⊗ Ωn

X → 0

0 0 0
(13)
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Degree of Involution

Interpretation! D-involutivity ∼ Serre vanishing (for sheaf of solutions).

Definition: Let Z be formally integrable and involutive. Its degree of
involution is
regSp(I) := inf

q0∈N

{
Hp,q

δ (M•) = 0, for all 0 ≤ p ≤ dimX, q ≥ q0
}

.

Proposition/Observation (⋆)
Suppose that I is formally integrable and Spencer regular. Then its degree of
involution, agrees with the Spencer-regularity, and thus agrees with the
Castelnuovo-Mumford regularity of its (linearized) symbolic D-module.

Proof. IZ∞ = {FA}; σ(IZ∞ ) := {σℓ,k(ℓFA )}. They are homogeneous
polynomials determining a ‘symbol ideal’ in a polynomial algebra (on
T ∗X). Spencer sequences and Koszul sequences are dual.
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Summary: The role of involution

Pure geometric reasoning will not suffice to known when new integrability
conditions stop occurring.

Use also algebraic theory: formal integrability is often not sufficient and
one introduces ‘involution’.

Rough idea: A natural polynomial structure lies hidden in the inner
geometry of the jet bundle formalism.

This allows us to associate with any {F = 0} a D-ideal I and graded
symbol module M• over a polynomial algebra.

Constructing integrability conditions of {F = 0} is then formalised via the
syzygies of M.

Remark: We make contact with classical questions in commutative algebra
and algebraic geometry.
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Numerical polynomials

By Prop. (⋆): associate a PD(OZ∞ ) using resolutions of
symbol/characteristic module M•. Such a resolution exists, expressible via
Spencer δ-cohomology.

Encodes the dimensions of Sol(IZ∞ ) (Cartan characters) and may be
determined geometrically from the dimension of the support the sheaf M•.

Define characteristic varieties CharD(Z∞) := supp(M•) ⊂ Z∞ ×X T ∗X

For each point z∞ ∈ Z∞, corresponding to solution, pull-back M• is
D-module and Char is usual characteristic variety ⊂ T ∗

X .

The D-Hilbert polynomial:

PD(OZ∞ , ℓ) =
∑
p,q

(−1)p+qdimHp,q
Sp (M•) ·

(
ℓ + n− p− q − 1

n− 1

)
. (14)
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Additional remarks

Interpretations of Spencer cohomology: Hp,q(M•) encode e.g. H∗,1(M•)
count ♯ generators of the symbol module, Hp,1(M•) count ♯ equations of
order p, and H∗,2(M•) counts compatibility conditions.

Spencer-Euler characteristic: If Hp,q(M•) are finite-dimensional,

χ(Z∞) :=
∑
p,q

(−1)p+qdim
(
Hp,q(M•

)
.

Finite-dimensionality can be guaranteed, for instance, if the system is
elliptic X is compact.

Suggest development of D-geometric Index theory for elliptic (hyperbolic!)
geometric PDEs.
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Summary by analogy

Comparing with Algebraic Geometry ⇒ numerical classification of
D-finitely generated ideals associated with differentially consistent systems

Concept Algebraic Geometry D-Geometry
Sheaf Algebraic ideal IZ ⊂ OX D-ideal IZ∞ ⊂ Aℓ

Geometric Sub-scheme Z D-subscheme Z∞ ↪→ J∞
X E

Numerical Hilbert polynomial POZ D-Hilbert polynomial POJ∞
X

E/IZ∞

Graded ring R∗ = ⊕tΓ(X,OX(t)) OT ∗(X;Z∞)(∗) = ⊕tOT ∗(X;Z∞)(t)
Sheaves F ∈ Coh(X) Ω1

Z∞ ∈ Mod(OZ∞ ⊗OX DX)
Graded module M∗ ∈ Modgr(R∗) Gr(Ω1

Z∞ ) ∈ Modgr(OT ∗(X;Z∞))
Sheaf theoretic Support Microsupport (characteristic variety)
Boundedness Castelnuovo-Mumford regularity Degree of involutivity

Moduli Hilbert scheme HilbX D-Hilbert scheme HilbP
D

*Establishes a new connection between differential-algebraic constraints
and moduli-theoretic invariants
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The D-Hilbert Functor



Recap so far

Introduced parameterizing space of isomorphism classes of exact sequences,

Quot(n, m, N, k) :=
{

Sequences (IZ∞ → OJ∞E → OZ∞ )
}

Isomorphism (15)

Restrict:

Quotinv(n, m, N, k) :=
{

[IZ∞ ] ∈ (15)| (Spencer-regular) , integrable
}

.

(16)

Assigned numerical characterizations PD(OZ∞ ) ∈ Q[z], tracking
homological complexity of symbolic system.

Goal
Prove (16) defines a moduli functor.
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Main Results of [KSh]

The main result constructs the moduli functor and proves its
representability.

Theorem (K-S, arXiv:2507.07937 (2025))
Let X be a smooth D-affine algebraic variety of dimension n. Let m ∈ N
represent the number of dependent variables and fix P ∈ Q[t]. Then there exists
a moduli functor classifying formally integrable (non-singular) algebraic
differential systems with specified (Spencer) regular symbolic behavior whose
numerical polynomial PD is equal to P :

QuotDX
(P ; n, m)inv : SchX(DX)op → Sets,

There exists a sub-functor consisting of Spencer semi-stable differential ideals
representable by an (ind)-finite-type D-scheme.
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Method of proof

The notion of D-regularity and of the degree of involution behave
appropriately with respect to sequences.

Proposition (K-S, arXiv:2507.07937 (2025))
If Z is Spencer m-regular, then it is Spencer m′-regular for all m′ ≥ m. Moreover,
suppose there are smooth morphisms of D-schemes Z′ → Z → Z′′, with D-ideals
I′, I, I′′, respectively, inducing a short exact sequence of symbols. Suppose each
D-scheme is Spencer regular. The following statements hold:

• If Z′ and Z′′ are m-regular, then so is Z;

• If Z′ is (m + 1)-regular and Z is m-regular then Z′′ is (m + 1)-regular;

• If Z is m-regular and Z′′ is (m − 1)-regular then Z′ is m-regular.
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Method of proof (á la Grothendieck/Douady)

• Analog of Mumford’s boundedness criterion:

Proposition (K-S, arXiv:2507.07937 (2025))
Fix a numerical polynomial P. Consider a family {Z∞

i }i∈I of Spencer-regular
algebraic PDEs. The following two statements are equivalent:

• The family is bounded;

• The set of D Hilbert polynomials {PD(OZ∞
i

)} is finite and there is a uniform
bound on the involutivity degrees i.e. RegDX

(Z∞
i ) ≤ ρ, ∀i ∈ I.

Namely, fixing an ambient D-scheme Z (e.g. J∞
X E) and P , there exists

some integer ρ = ρ(P ) such that for Z∞
i ⊂ Z with D-Hilbert polynomial

Pi = P, its D-ideal sheaf has D-regularity ρ.
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Non-characteristic restriction

• PDE Leftschetz hyperplane theorem:

Theorem (K-S, arXiv:2507.07937 (2025))
Let IZ∞ be a D-involutive D-ideal sheaf. For j : H ⊂ T ∗X a
non-microcharacteristic analytic subset, denote by IH the D-ideal obtain by
non-characteristic restriction. Then RegD(IX) = m if and only if
RegD(IH) = m.

Spencer regularity is thus preserved under restriction to non-characteristic
subvarieties. This allows us to control local-to-global properties of symbolic
data.
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Main Result

A second result is the calculation of the Zariski tangent D-module.

Theorem (Theorem (K-S, arXiv:2507.07937 (2025)))
The tangent space at a point [I] controlling first-order deformations of I as a
D-ideal, is given by

T[I]HilbDX
(J∞

X E) ≃ HomDX
(I, O(J∞

X E)/I).

There is a space of obstructions Obs[I] which is a filtered D-module over the
D-scheme defined by I whose associated graded algebra is isomorphic to a
sub-quotient of the Ext1 group giving the (truncated) Spencer cohomology
determined by the symbol of I.
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GIT Quotients and Moduli of Spencer stable modules

One can prove a moduli space of Spencer stable finitely presented modules
(PDE analog of moduli of coherent sheaves).

There exists a locus: QuotSp−ss,inv
D ⊂ Quotinv

D , and for algebraic
pseudogroups G acting on points of Quotinv

D (P, n, m), we describe the
invariant quotient:

QuotSp−ss,inv
D (P, n, m)//G.

With G an Algebraic Lie pseudogroup: a family of algebraic sub-groups
{Gk} of k-jets of bundle isomorphisms ϕ acting on E (covering
diffeomorphisms ϕ of X).

Actions lift to k-jet spaces: ϕ(k) : Jk
XE → Jk

XE, [s]kx 7→ [ϕ ◦ s ◦ ϕ−1]kϕ(x),
functorially in E, X and jet-order, and restrict to PDEs Zk ⊂ Jk

XE :

E F

X Y

ϕ

π η

ϕ

⇒
Jk

XE Jk
Y F

Jℓ
XE Jℓ

Y F

ϕ(k)

ϕ(ℓ)

We care about X = Y. 40



GIT Quotients

We describe the moduli space as a type of PDE-theoretic GIT-quotient.

• D-geometric Luna slice theorem:

Theorem (K-S, arXiv:2507.07937 (2025))
Given an algebraic action by a (formally integrable) Lie pseudogroup
G := {Gk}k≥0, on a D-scheme with ideal I, the quotient equation exists and is
again an algebraic D-scheme, with ideal IG. In particular, the (categorical)
quotient D-scheme [Z/G] := {[Zk/Gk]}k≥0, corresponds to a geometric quotient.

Importantly, its numerical characterization behaves well (e.g. polynomially)
and its symbolic complexity is controlled (e.g. bounded).
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Application of Spencer-stability to
Non-abelian Hodge and DUY theorems



Stability and Extremal Problems

Solutions to Differential Geometric extremal problems correspond to
Algebro-Geometric stability questions.

Theorem (Donaldson ’85, Uhlenbeck-Yau ’85)
Let (X, ω) be a compact Kähler manifold. A holomorphic vector bundle
E → (X, ω) admits a Hermitian-Einstein metric if and only if it is slope
polystable.

Interpretation: Existence of PDE solutions ↭ Stability.

Automorphisms: Stability ⇒ End(E) = C · id.

Remark
Many challenging and interesting open conjectures (e.g. Thomas-Yau,
Yau-Tian-Donaldson, higher rank cases, hypercritical phases, relations to HMS).

T. Bridgeland, Ann. of Math. 166 (2007) 317–345
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Relations to stability

The connection to stability questions we focus on arises from the
Non-Abelian Hodge Correspondence.

Theorem (Corlette, Simpson)
Let X be smooth projective and let (V,∇) be a complex local system with
reductive monodromy. Let (E, θ) be the associated polystable Higgs bundle.
Then

H∗(X, (V,∇)) ∼= H∗(X, (E, θ)).

Recall: A Higgs bundle (E, θ) of rank m is OX(1)-stable (resp. semistable)
if for all θ invariant subsheaves F ⊂ E,

p(F ) < p(E),
(
resp. p(F ) ≤ p(E)

)
,

where p(F ) := χ
(
X; F ⊗OX(m)

)
/rk(F ), is the reduced Hilbert polynomial

of F.
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Remarks

Remark. The Spencer-type polynomial stability encodes and generalizes
well-known sheaf-theoretic stability conditions.

Moduli Space Stability / Boundedness Condition

Moduli of coherent sheaves Gieseker/slope stability

Hilbert/Quot moduli functors Castelnuovo–Mumford regularity

Moduli of relative local systems Semisimplicity / reductivity

Moduli of Higgs bundles Slope (poly)stability

D-Hilbert functor Spencer stability

Works for non-linear PDEs on vector bundles, coherent sheaves, complexes,
objects Db(X), objects with stacky/derived structure etc.

Observation

Spencer-stability of PDEs imposed on bundles Formal solutions−−−−−−−−−−−→ Sheaf-stability of
bundles/sheaves.
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Application: Equation of flat connections

Let (X, ω) be a compact Kähler manifold and (E,∇) a holomorphic vector
bundle of rank m with a flat connection ∇ : E → E ⊗ Ω1

X . Consider the
Atiyah algebroid of E:

0 −→ End(E) −→ At(E) −→ TX −→ 0,

where At(E) consists of first-order differential operators on E with symbol
in TX . Dually, consider J1

XE the first jet bundle of E, and J∞
E J1

XE its
infinite jet bundle. The flatness of ∇ is encoded by a differential ideal

I∇ ⊂ A := O(J∞
E J1

XE)

generated by the differential equations defining the curvature. Denote

B∇ := A/I∇,

the DX -algebra of functions. The tangent space to the D-Hilbert functor at
[I∇] is

T[I∇]HilbD(A) ≃ HomA[DX ](I∇,B∇).
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Differential-algebraic stability criteria

Consider the associated graded of the jet filtration on I∇:

gr(I∇) =
⊕
k≥0

F kI∇/F k+1I∇,

where F kI∇ is the k-th jet order.

Then, the Spencer cohomology computes

Hp,q
Sp (gr(I∇)) ≃ Hq(X, Ωp

X ⊗ End(E)).

There is a stability-type correspondence providing a purely PDE analog of
DUY and NAH theorems.
Theorem ((K-S, 2025)

Let (X, ω) be a compact Kähler manifold. Then a holomorphic vector bundle E

admits a Hermitian-Yang-Mills metric if and only if the associated flat
connection ∇ defines a Spencer-polystable differential ideal I(E,∇).

The canonical ideal I(E,∇), corresponds to the equation of flat connections.

It encodes the infinitesimal geometry of flat bundles. 46



Further details

Connections on E are identified with sections of the affine bundle
π1,0 : J1(E) −→ E. Put D(Ωp

E) the module of Ωp
E-valued derivations.

Connection form and Frölicher–Nijenhuis bracket
A section ∇ of this bundle determines a decomposition d = Ū∇ + U∇, where
Ū∇ ∈ D(Ω1

E) is defined by

X
(

Ū∇(f)
)

:= (∇XM )(f), X ∈ D(E), f ∈ C∞(E),

and U∇ := d − Ū∇ is the vertical connection form.

[[·, ·]] : D(Ωp
E) × D(Ωq

E) −→ D(Ωp+q
E )

extends the Lie bracket of vector fields: ∇ flat ⇐⇒ [[Ū∇, Ū∇]] = 0.

Intrinsic definition
The equation of flat connections is the submanifold

Zflat :=
{

θ1 ∈ J1(E)
∣∣∣ [

[ Ū∇, Ū∇ ]
]

π1,0(θ1)
= 0

}
,

where θ1 = [∇]1θ is the 1-jet of any local representative connection ∇.

• The value of
[
[Ū∇, Ū∇]

]
at θ depends only on θ1 ∈ J1(E), not on the

choice of ∇. 47



Set-theoretic Spencer–NAH II


Spencer-polystable differential ideals

J ⊊ I∇

PD(OS) ≤ PD(Z∇)

 ←→


θ-invariant polystable subbundles

F ⊊ (E, θ)
p(F ) ≤ p(E)

 .

Example: D-stable sub-diffieties ↔ θ-invariant sub-Higgs bundles.

Caution: this is not an equivalence of moduli spaces.
Important observation
These constructions can be extended:

E ⇝ E• := [· · · Ei d−→ Ei+1 d−→ · · · ],

from bundles E to complexes E• or more general objects of the derived category
Db(X).

Spencer-stability as PDE-stability provides a criteria for existence of metrics on
these objects! 48
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D-Quot DG-Scheme



Derived D-Geometry

Natural to ask:
Question
Is there a derived enhancement RQuotDX

? Is it representable?

Use a natural derived enhancement to D-geometry:

Algebraic D-Geometry ; Derived D-Geometry

SchX(DX) ⊂ Fun(CAlgX(DX)op, Sets) ; dStkX(DX) ⊂ dPStkX(DX).

In a paraphrased form the main result of Part II [KSh2]

Theorem (K-S, arXiv:2411.02387, (2025))
Consider Theorem 1. It has a natural derived enhancement given by the D-Quot
functor QuotDX ,Z . It is a D-simplicial presheaf (satisfying descent) which is
moreover representable by a dg-D-manifold of D-finite presentation.

Realizes an underlying classical finite-type D-scheme as the classical
truncation of a dg-D-manifold obtained as a simplicial diagram of
dg-schemes modulo actions of Lie pseudogroups (the D-Quot dg-manifold). 49
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Idea of proof

Solve the derived moduli problem: selecting m0 ∈ N large enough to ensure
involutivity of Y, we want to classify A∞-submodules in a certain category
of DX -modules, of the form

N≥m0 ↪→ Ch≥m0 , with dim(Nk) = hD(k), ∀k ≥ m0.

Rmk. Having a (graded) submodule Na,t ↪→ Ch is expressed via algebra
relations on a product,

Gr[a,t] :=
∏

a≤s≤t

Gr
(
dim(Ns), Chs

)
.

N.B! Since symbol/characteristic modules are finitely-cogenerated if the
equation is involutive and formally integrable.

We may can choose a basis in Ns ↪→ Ch, and this generates actions of Gl of
rank P (s) on Ns.

50



Technical remarks

Solve in a ‘stretch’ [a, t]: extend beyond via MC-equations.

Based on constructing a dg-Lie algebra object in D-modules,

gn
≥a;t := P∗

[n]⊔∗({A,N≥a};Nt

)
⊕ P∗

[n]⊔{∗}({A,N≥a}; Cht

)
,

then, roughly speaking, one proceeds as follows:

• Use Koszul duality ; dg-commutative algebra object e.g. generated by
g◦[−1] leading to a (formal derived D-stack)

Y[a,a+2] := Spec
D

(
CE•,⊗⋆

(g•
a,t[1])◦)

. (17)

We end up with a sequence of formal derived D-stacks,

. . .→ Y[a,a+2] → Y[a,a+1] → Ya, (18)

• Look at the ‘injectivity’ locus (so sub-module structures, not just
A∞-morphisms)

• Take a geometric quotient and computing a colimit (reduction to a
D-geometric Postnikov-type sequence).
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Summary

Thank you for your attention!

52



References

References

[BKS] Borisov, D; Katzarkov, L; Sheshmani, A: “Shifted symplectic structures on derived
Quot-stacks I – Differential graded manifolds,” Advances in Mathematics,
Vol. 403, 34 pages, (2022).

[BKSY2] Borisov, D; Katzarkov, L; Sheshmani, A; Yau, S-T: “Shifted symplectic structures
on derived Quot-stacks II–Derived Quot-schemes as dg manifolds,” Advances
in Mathematics, Vol. 462, 10092, (2025)

[CFK] Ciocan-Fontanine, I; Kapranov, M: “Derived Quot Schemes.” Annales
scientifiques de l’École normale supérieure. Elsevier, VoL. 34, pp: 403–440,
(2001).

[CFK2] Ciocan-Fontanine, I; Kapranov, M: “Derived Hilbert Schemes.” Journal of the
American Mathematical Society. 15(4):787– 815, (2002).

[KS] Kashiwara, M; Schapira, P: “Sheaves on manifolds,” Grundlehren der
Mathematischen Wissenschaften. 292, Springer-Verlag, (1990).

[KSh] Kryczka, J; Sheshmani, A: “The D-Geometric Hilbert Scheme – Part I:
Involutivity and Stability” arXiv:2507.07937, (2025).

[KSh2] Kryczka, J; Sheshmani, A: “The D-Geometric Hilbert Scheme – Part II: Hilbert
and Quot DG-Schemes.” arXiv:2411.02387, (2024).

[KSY] Kryczka, J; Sheshmani, A; Yau, S-T: “Derived Moduli Spaces of Nonlinear PDEs
I: Singular Propagations”, arXiv:2312.05226, (2023).

[KSY2] Kryczka, J; Sheshmani, A; Yau, S-T: “Derived Moduli Spaces of Nonlinear PDEs
II: Variational Tricomplex and BV Formalism”, arXiv:2406.16825, (2024).

[Vin] Vinogradov, A: “Category of Nonlinear Differential Equations”, Lecture
Notes Math., Vol. 1108, Springer-Verlag, Berlin, (1984), pp. 77-102.

53

https://arxiv.org/abs/2507.07937
https://arxiv.org/abs/2411.02387
https://arxiv.org/abs/2312.05226
https://arxiv.org/abs/2406.16825

	Hilbert and Quot Schemes in Algebraic Geometry
	Algebraic D-Geometry of Non-linear PDEs
	The D-Hilbert Functor
	Application of Spencer-stability to Non-abelian Hodge and DUY theorems
	D-Quot DG-Scheme
	References

